When converting a periodic 2D signal from image space to Fourier space and back, the reconstructed signal has twice the frequency of the original signal (see picture below). I tried to use the Discrete Fourier Transform from NumPy and OpenCV, both with the same result. The problem does not occur when using a 1D DFT and IDFT.
Do you have any ideas what is the source of this problem could be and how to fix it?
Here is a sample code in Python demonstrating the issue:
import matplotlib.pyplot as plt
import numpy as np
# image width and height
w = 320
h = 320
# frequency of cosine wave w.r.t. the image width
frequency = 1
# function to create a horizontal 2D cosine wave
def create_cos_horizontal(frequency, w, h):
img = np.zeros((h,w),np.float32)
base_period = w/(2*np.pi)
print(frequency)
for x in range(0, w):
img[0:, x] = np.cos(x*frequency/base_period)
return img
img = create_cos_horizontal(frequency, w, h)
# transform from image space to fourier space
dft = np.fft.fft2(img)
# transform back from fourier space to image space
im_back = np.fft.ifft2(dft)
# show original and reconstructed image side by side
ax1 = plt.subplot(1,2,1)
ax1.imshow(img, cmap='gray')
ax1.set_title("original signal")
ax2 = plt.subplot(1,2,2)
ax2.imshow(np.abs(im_back), cmap='gray')
ax2.set_title("signal after DFT and IDFT")
Thank you so much in advance.
CodePudding user response:
The call to abs()
in the second plot is rectifying the cosine, inverting the negative part of the curve. If you replace it with real(im_back)
the plots match as expected.