I have a dataframe in pandas:
import pandas as pd
# assign data of lists.
data = {'Gender': ['M', 'F', 'M', 'F','M', 'F','M', 'F','M', 'F','M', 'F'],
'Employment': ['R','U', 'E','R','U', 'E','R','U', 'E','R','U', 'E'],
'Age': ['Y','M', 'O','Y','M', 'O','Y','M', 'O','Y','M', 'O']
}
# Create DataFrame
df = pd.DataFrame(data)
df
What I want is to create for each category of each existing column a new column with the following format:
Gender_M -> for when the gender equals M
Gender_F -> for when the gender equal F
Employment_R -> for when employment equals R
Employment_U -> for when employment equals U
and so on...
So far, I have created the below code:
for i in range(len(df.columns)):
curent_column=list(df.columns)[i]
col_df_array = df[curent_column].unique()
for j in range(col_df_array.size):
new_col_name = str(list(df.columns)[i]) "_" col_df_array[j]
for index,row in df.iterrows():
if(row[curent_column] == col_df_array[j]):
df[new_col_name] = row[curent_column]
The problem is that even though I have managed to create successfully the column names, I am not able to get the correct column values.
For example the column Gender should be as below:
data2 = {'Gender': ['M', 'F', 'M', 'F','M', 'F','M', 'F','M', 'F','M', 'F'],
'Gender_M': ['M', 'na', 'M', 'na','M', 'na','M', 'na','M', 'na','M', 'na'],
'Gender_F': ['na', 'F', 'na', 'F','na', 'F','na', 'F','na', 'F','na', 'F']
}
df2 = pd.DataFrame(data2)
Just to say, the na
can be anything such as blanks or dots or NAN.
CodePudding user response:
You're looking for pd.get_dummies
.
>>> pd.get_dummies(df)
Gender_F Gender_M Employment_E Employment_R Employment_U Age_M Age_O Age_Y
0 0 1 0 1 0 0 0 1
1 1 0 0 0 1 1 0 0
2 0 1 1 0 0 0 1 0
3 1 0 0 1 0 0 0 1
4 0 1 0 0 1 1 0 0
5 1 0 1 0 0 0 1 0
6 0 1 0 1 0 0 0 1
7 1 0 0 0 1 1 0 0
8 0 1 1 0 0 0 1 0
9 1 0 0 1 0 0 0 1
10 0 1 0 0 1 1 0 0
11 1 0 1 0 0 0 1 0
CodePudding user response:
If you are trying to get the data in a format like your df2 example, I believe this is what you are looking for.
df[['Gender']].join(pd.get_dummies(df[['Gender']]).mul(df['Gender'],axis=0).replace('',np.NaN))
Output:
Gender Gender_F Gender_M
0 M NaN M
1 F F NaN
2 M NaN M
3 F F NaN
4 M NaN M
5 F F NaN
6 M NaN M
7 F F NaN
8 M NaN M
9 F F NaN
10 M NaN M
11 F F NaN
CodePudding user response:
If you are okay with 0s and 1s in your new columns, then using get_dummies
(as suggested by @richardec) should be the most straightforward.
However, if want a specific letter in each of your new columns, then another method is to loop through the current columns and the specific categories within each column, and create a new column from this information using apply.
for col in data.keys():
categories = list(df[col].unique())
for category in categories:
df[f"{col}_{category}"] = df[col].apply(lambda x: category if x==category else float("nan"))
Result:
>>> df
Gender Employment Age Gender_M Gender_F Employment_R Employment_U Employment_E Age_Y Age_M Age_O
0 M R Y M NaN R NaN NaN Y NaN NaN
1 F U M NaN F NaN U NaN NaN M NaN
2 M E O M NaN NaN NaN E NaN NaN O
3 F R Y NaN F R NaN NaN Y NaN NaN
4 M U M M NaN NaN U NaN NaN M NaN
5 F E O NaN F NaN NaN E NaN NaN O
6 M R Y M NaN R NaN NaN Y NaN NaN
7 F U M NaN F NaN U NaN NaN M NaN
8 M E O M NaN NaN NaN E NaN NaN O
9 F R Y NaN F R NaN NaN Y NaN NaN
10 M U M M NaN NaN U NaN NaN M NaN
11 F E O NaN F NaN NaN E NaN NaN O