Lets say i have a dataframe like this one:
df1:
col1 col2
0 data1 math
1 data1 math2
2 data2 math
3 data3 math
4 data4 math2
df2:
col1 col2
0 data1 math
1 data1 math2
2 data1 math3
3 data2 math2
4 data3 math
5 data4 math2
6 data4 math3
how can i compare these two dataframes based on col1 and col2 and get the difference (remove all the rows that match with df1) and have a dataframe like this one:
col1 col2
0 data1 math3
1 data2 math2
2 data4 math3
I tried this one but it is not working:
df3 = df2[~(df2['col2'].isin(df1['col2']))].reset_index(drop=True)
CodePudding user response:
Your solution should be changed with compare MultiIndex
or tuples:
df3 = df2[~df2.set_index(['col1','col2']).index.isin(df1.set_index(['col1','col2']).index)].reset_index(drop=True)
df3 = df2[~df2[['col1','col2']].apply(tuple, 1).isin(df1[['col1','col2']].apply(tuple, 1))].reset_index(drop=True)
CodePudding user response:
You can perform a merge with indicator=True
and keep only the right_only
rows:
(df1.merge(df2, on=['col1', 'col2'], how='outer', indicator=True)
.query('_merge == "right_only"')
.drop(columns='_merge').reset_index(drop=True)
)
output:
col1 col2
0 data1 math3
1 data2 math2
2 data4 math3