Home > front end >  How to interpret logit score from Hugging face binary classification model and convert it to probabi
How to interpret logit score from Hugging face binary classification model and convert it to probabi

Time:12-20

I am downloading the model https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384/tree/main microsoft/Multilingual-MiniLM-L12-H384 and then using it. I am loading model using BertForSequenceClassification

https://huggingface.co/docs/transformers/model_doc/bert#:~:text=sentence was random-,BertForSequenceClassification,-class transformers.BertForSequenceClassification

Transformer Version: '4.11.3'

I have written the below code:

def compute_metrics(eval_pred):
    logits, labels = eval_pred
   

    predictions = np.argmax(logits, axis=-1)
    
    acc = np.sum(predictions == labels) / predictions.shape[0]
    return {"accuracy" : acc}

model = tr.BertForSequenceClassification.from_pretrained("/home/pc/minilm_model",num_labels=2)
model.to(device)

print("hello")

training_args = tr.TrainingArguments(
    output_dir='/home/pc/proj/results2',          # output directory
    num_train_epochs=10,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=32,   # batch size for evaluation
    learning_rate=2e-5,
    warmup_steps=1000,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=1000,
    evaluation_strategy="epoch",
    save_strategy="no"
)



trainer = tr.Trainer(
    model=model,                         # the instantiated            
  • Related