I have created a 2d numpy array with 2 rows and 5 columns.
import numpy as np
import pandas as pd
arr = np.zeros((2, 5))
arr[0] = [12, 94, 4, 4, 2]
arr[1] = [1, 3, 4, 12, 46]
I have also created a dataframe with two columns col1
and col2
list1 = [1,2,3,4,5]
list2 = [2,3,4,5,6]
df = pd.DataFrame({'col1': list1, 'col2': list2})
I used pandas isin
function with col1
and col2
to create a boolean value list, like this:
df['col1'].isin(df['col2'])
output
0 False
1 True
2 True
3 True
4 True
Now I want to use these bool values to slice the 2d array that I have created before, I can do that for a single row but now for the whole 2d array at once:
print(arr[0][df['col1'].isin(df['col2'])])
print(arr[1][df['col1'].isin(df['col2'])])
output:
[94. 4. 4. 2.]
[ 3. 4. 12. 46.]
but when I do something like this:
print(arr[df['col1'].isin(df['col2'])])
But this gives the error:
IndexError: boolean index did not match indexed array along dimension 0; dimension is 2 but corresponding boolean dimension is 5
Is there a way to achieve this?
CodePudding user response:
You should slice on the second dimension of the array:
arr[:, df['col1'].isin(df['col2'])]
output:
array([[94., 4., 4., 2.],
[ 3., 4., 12., 46.]])