import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('jelly.jpg') //reading the img
cv2.imshow(' img',img) //initial image
cv2.waitKey(0)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) // converting image to RGB
pixel_vals =img.reshape((-1,3)) //reshaping coloured 3d image to 2d image
pixel_vals = np.float32(pixel_vals)
criteria = (cv2.TERM_CRITERIA_EPS cv2.TERM_CRITERIA_MAX_ITER,100,0.85) //setting criteria for kmeans
k= 5 //number of clusters
retval, labels, centers = cv2.kmeans(pixel_vals,k,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
centers = np.uint8((centers))
segmented_data = centers[labels.flatten()]
segmented_img = segmented_data.reshape((img.shape)) //final image
cv2.imshow('K-means segmented img',segmented_img) // showing the final image after k means segmentation
cv2.waitKey(0)
cv2.destroyAllWindows() //destroying all window pop-up of images
I want to get only like violet part or brown part according to intensities. I have tried looking but i am not able to find any function. as there is a chance that the blue colour or any other colour is present in different shade. Is there a way to also get particular shade of different colours masking other areas ?
Original Image
K means segmented image
CodePudding user response:
I am not sure what you want to do because by your description you seem to want one thing and then by the title a completely different one. But I have segmented the parts you wanted.
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('jelly.png')
plt.imshow(img)
plt.show()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pixel_vals =img.reshape((-1,3))
pixel_vals = np.float32(pixel_vals)
criteria = (cv2.TERM_CRITERIA_EPS cv2.TERM_CRITERIA_MAX_ITER,100,0.85)
k= 5
retval, labels, centers = cv2.kmeans(pixel_vals,k,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
clustered_img = labels.reshape((img.shape[0], img.shape[1]))
clusters_to_0 = [1,2,4]
for c in clusters_to_0:
clustered_img[clustered_img == c] = -1
clustered_img[clustered_img!=-1] = 1
clustered_img[clustered_img==-1] = 0
clustered_img
plt.imshow(clustered_img)
plt.show()
CodePudding user response:
I suggest another approach by transforming the image to the HSV channel and then thresholding the Hue channel since it contains the information about the tonality of the colours:
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('jelly.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h,s,v = cv2.split(hsv)
(_, th) = cv2.threshold(h, 0, 1, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
plt.subplot(131)
plt.imshow(img)
plt.title('Original image')
plt.subplot(132)
plt.imshow(h)
plt.title('Hue channels of the HSV color-space')
plt.subplot(133)
plt.imshow(th)
plt.title('Thresholded image')
plt.show()