Home > front end >  Pandas: Calculating a value in a separate data frame column frame based on range of values in anothe
Pandas: Calculating a value in a separate data frame column frame based on range of values in anothe

Time:03-10

I'm using python 3.9, and I'm trying to calculate an output value in another dataframe column based on a range of values in another column.

For instance, in df['a'], I have integers between 0 and 50, in no particular order.

I am trying to create another column named df['output_column'] in that same dataframe based on an if statement.

import pandas as pd
import numpy as np

p = 'a'

if df[p] in range(0, 7):
    df['output_column'] = 95
elif df[p] in range(8, 14):
    df['output_column'] = 90
elif df[p] in range(15, 21):
    df['output_column'] = 85
elif df[p] in range(22, 28):
    df['output_column'] = 80
else:
    df['output_column'] = 75

However, I get the following error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Input In [18], in <module>
      1 p = 'a'
----> 3 if df[p] in range(0, 7):
      4     df['output_column'] = 95
      5 elif df[p] in range(8, 14):

File ~\path_to_pandas\pandas\core\generic.py:1535, in NDFrame.__nonzero__(self)
   1533 @final
   1534 def __nonzero__(self):
-> 1535     raise ValueError(
   1536         f"The truth value of a {type(self).__name__} is ambiguous. "
   1537         "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
   1538     )

ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

How can I correct this?

CodePudding user response:

You can use pd.cut to do this:

df['output'] = pd.cut(df[p], 
                      bins=[-np.inf,8,15,22,29,np.inf], 
                      labels=[95,90,85,80,75]).astype(int)

CodePudding user response:

You can set your ranges with .bewteen() and then populate your new output_column with np.select().

import pandas as pd
import numpy as np

ranges = [df['a'].between(0, 6),
          df['a'].between(7, 13), df['a'].between(14, 20),
          df['a'].between(21, 27), df['a'].between(28, 999)]

values = [95,90, 85, 80, 75]

df['output_column'] = np.select(ranges, values)

CodePudding user response:

df["output_column"] = 95
df.loc[df[p]>=8, "output_column"] = 90
df.loc[df[p]>=15, "output_column"] = 85
df.loc[df[p]>=22, "output_column"] = 80
df.loc[df[p]>=29, "output_column"] = 75
  • Related