Program should find smallest enclosing circle of two points.
EXAMPLE: (1,1) (2,2)
The smallest circle for these two points would be the circle with center(1.5, 1,5) and radius 0.71. This is just a representation of that on a graph: Two points inside a circle
Here's the problem solution:
#include <iostream>
#include <math.h>
#include <vector>
using namespace std;
const double INF = 1e18;
struct Point {
double X, Y;
};
struct Circle {
Point C;
double R;
};
double dist(const Point& a, const Point& b)
{ return sqrt(pow(a.X - b.X, 2) pow(a.Y - b.Y, 2)); }
int is_inside(const Circle& c, const Point& p)
{ return dist(c.C, p) <= c.R; }
Circle circle_from(const Point& A, const Point& B)
{
Point C = { (A.X B.X) / 2.0, (A.Y B.Y) / 2.0 };
return { C, dist(A, B) / 2.0 };
}
int is_valid_circle(const Circle& c, const vector<Point>& P)
{
for (const Point& p : P)
if (!is_inside(c, p)) return 0;
return 1;
}
Circle minimum_enclosing_circle(const vector<Point>& P)
{
int n = (int)P.size();
if (n == 0)
return { { 0, 0 }, 0 };
if (n == 1)
return { P[0], 0 };
Circle mec = { { 0, 0 }, INF };
for (int i = 0; i < n; i ) {
for (int j = i 1; j < n; j ) {
Circle tmp = circle_from(P[i], P[j]);
if (tmp.R < mec.R && is_valid_circle(tmp, P))
mec = tmp;
}
}
return mec;
}
int main() {
Circle mec = minimum_enclosing_circle({
{1, 1},
{2, 2},
});
printf("(%.2f,%.2f) %.2f", mec.C.X, mec.C.Y, mec.R);
return 0;
}
int main() {
Circle mec = minimum_enclosing_circle({
{1, 1},
{2, 2},
});
printf("(%.2f,%.2f) %.2f", mec.C.X, mec.C.Y, mec.R);
return 0;
}
Problem with this code is using vectors for calculations. How could this be written without using vectors and with using C arrays?
CodePudding user response:
normal array in c don't have some method like size() , in your code you need to pass size parameter with pointer instead of vector::size() and -> it can work well
int is_valid_circle(const Circle c, const Point* P, size_t size)
{
for(int i = 0; i < size ; i )
{
if (!is_inside(c, P[i])) return 0;
}
return 1;
}
Circle minimum_enclosing_circle(const Point* P, size_t size)
{
int n = size;
if (n == 0)
return { { 0, 0 }, 0 };
if (n == 1)
return { P[0], 0 };
Circle mec = { { 0, 0 }, INF };
for (int i = 0; i < n; i ) {
for (int j = i 1; j < n; j ) {
Circle tmp = circle_from(P[i], P[j]);
if (tmp.R < mec.R && is_valid_circle(tmp, P, size))
mec = tmp;
}
}
return mec;
}
tested at : https://godbolt.org/z/xWTqfqxsn