I am trying to apply successive filters on a dataframe without knowing in advance the number of filter or their arguments. Arguments are stocked in a list. With 1 or 2 filters, i can do it with purrr.
For instance with 2 filters :
require(tidyverse)
data("iris")
head(iris)
f2 <- list("Species" = "virginica", "Sepal.Length" = c(5.8, 6.3))
iris_f2 <- map2_df(.x = f2[[1]],
.y = f2[[2]],
.f = ~{
iris %>%
filter(get(names(f2)[1]) %in% .x,
get(names(f2)[2]) %in% .y)
})
# With 3 filters or more, I am completely stuck !
f3 <- list("Species" = "virginica", "Sepal.Length" = c(5.8, 6.3), "Sepal.Width" = 2.7)
I would like to generalize my code so that it applies successive filters with n arguments in a list (n can be 1, or 2 as in my example or more).
Ideally, I would like to know how to do it with purrr but I am also interested in loop-based solutions.
CodePudding user response:
Here is one way that uses call()
to construct defused expressions that can be spliced inside of filter()
.
library(purrr)
library(dplyr)
fns <- imap(f3, ~ call(if (length(.x) == 1) "==" else "%in%", sym(.y), .x))
Which gives the following:
$Species
Species == "virginica"
$Sepal.Length
Sepal.Length %in% c(5.8, 6.3)
$Sepal.Width
Sepal.Width == 2.7
However, the names cause an issue when spliced, so it needs to be unnamed before use:
iris %>%
filter(!!!unname(fns))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.8 2.7 5.1 1.9 virginica
2 6.3 2.7 4.9 1.8 virginica
3 5.8 2.7 5.1 1.9 virginica