This is how my dataframe looks like:
datetime open high low close
2006-01-02 4566.95 4601.35 4542.00 4556.25
2006-01-03 4531.45 4605.45 4531.45 4600.25
2006-01-04 4619.55 4707.60 4616.05 4694.14
.
.
.
Need to calculate the Monthly Returns in %
Formula: (Month Closing Price - Month Open Price) / Month Open Price
I can't seem to get the open price and closing price of a month, because in my df most months dont have a log for the 1st of the month. So having trouble calculating it.
Any help would be very much appreciated!
CodePudding user response:
You need to use groupby
and agg
function in order to get the first and last value of each column in each month:
import pandas as pd
df = pd.read_csv("dt.txt")
df["datetime"] = pd.to_datetime(df["datetime"])
df.set_index("datetime", inplace=True)
resultDf = df.groupby([df.index.year, df.index.month]).agg(["first", "last"])
resultDf["new_column"] = (resultDf[("close", "last")] - resultDf[("open", "first")])/resultDf[("open", "first")]
resultDf.index.rename(["year", "month"], inplace=True)
resultDf.reset_index(inplace=True)
resultDf
The code above will result in a dataframe that has multiindex column. So, if you want to get, for example, rows with year of 2010, you can do something like:
resultDf[resultDf["year"] == 2010]
CodePudding user response:
You can create a custom grouper such as follow :
import pandas as pd
import numpy as np
from io import StringIO
csvfile = StringIO(
"""datetime\topen\thigh\tlow\tclose
2006-01-02\t4566.95\t4601.35\t4542.00\t4556.25
2006-01-03\t4531.45\t4605.45\t4531.45\t4600.25
2006-01-04\t4619.55\t4707.60\t4616.05\t4694.14""")
df = pd.read_csv(csvfile, sep = '\t', engine='python')
df.datetime = pd.to_datetime(df.datetime, format = "%Y-%m-%d")
dg = df.groupby(pd.Grouper(key='datetime', axis=0, freq='M'))
Then each group of dg is separate by month, and since we convert datetime as pandas.datetime we can use classic arithmetic on it :
def monthly_return(datetime, close_value, open_value):
index_start = np.argmin(datetime)
index_end = np.argmax(datetime)
return (close_value[index_end] - open_value[index_start]) / open_value[index_start]
dg.apply(lambda x : monthly_return(x.datetime, x.close, x.open))
Out[97]:
datetime
2006-01-31 0.02785
Freq: M, dtype: float64
Of course a pure functional approach is possible instead of using monthly_return
function