I have list of labels corresponding numbers of files in directory example: [1,2,3]
train_ds = tf.keras.utils.image_dataset_from_directory(
train_path,
label_mode='int',
labels = train_labels,
# validation_split=0.2,
# subset="training",
shuffle=False,
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
I get error:
ValueError: Expected the lengths of `labels` to match the number of files in the target directory. len(labels) is 51033 while we found 0 files in ../input/jpeg-happywhale-128x128/train_images-128-128/train_images-128-128.
I tried define parent directory, but in that case I get 1 class.
CodePudding user response:
Your data folder probably does not have the right structure. Try something like this:
import numpy
from PIL import Image
import tensorflow as tf
samples = 10
for idx, c in enumerate(['/content/data/class1/', '/content/data/class2/']*samples):
imarray = numpy.random.rand(100,100,3) * 255
im = Image.fromarray(imarray.astype('uint8')).convert('RGB')
im.save('{}result_image{}.png'.format(c, idx))
train_labels = [0]*samples [1]*samples
train_ds = tf.keras.utils.image_dataset_from_directory(
'/content/data',
label_mode='int',
labels = train_labels,
shuffle=False,
seed=123,
image_size=(100, 100),
batch_size=4)
for x, y in train_ds.take(1):
print(x.shape, y)
Found 20 files belonging to 2 classes.
(4, 100, 100, 3) tf.Tensor([0 0 0 0], shape=(4,), dtype=int32)
Your folder structure should look like this:
├── data
│ ├── class2
│ │ ├── result_image5.png
│ │ ├── result_image9.png
│ │ ├── result_image15.png
│ │ ├── result_image13.png
│ │ ├── result_image1.png
│ │ ├── result_image3.png
│ │ ├── result_image11.png
│ │ ├── result_image19.png
│ │ ├── result_image7.png
│ │ └── result_image17.png
│ └── class1
│ ├── result_image14.png
│ ├── result_image8.png
│ ├── result_image12.png
│ ├── result_image18.png
│ ├── result_image16.png
│ ├── result_image6.png
│ ├── result_image2.png
│ ├── result_image10.png
│ ├── result_image4.png
│ └── result_image0.png
CodePudding user response: