I want to fill the null
values of a column with the content of another column of the same row in a lazy data frame in Polars.
Is this possible with reasonable performance?
CodePudding user response:
There's a function for this: fill_null
.
Let's say we have this data:
import polars as pl
df = pl.DataFrame({'a': [1, None, 3, 4],
'b': [10, 20, 30, 40]
}).lazy()
print(df.collect())
shape: (4, 2)
┌──────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞══════╪═════╡
│ 1 ┆ 10 │
├╌╌╌╌╌╌┼╌╌╌╌╌┤
│ null ┆ 20 │
├╌╌╌╌╌╌┼╌╌╌╌╌┤
│ 3 ┆ 30 │
├╌╌╌╌╌╌┼╌╌╌╌╌┤
│ 4 ┆ 40 │
└──────┴─────┘
We can fill the null values in column a with values in column b:
df.with_column(pl.col('a').fill_null(pl.col('b'))).collect()
shape: (4, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1 ┆ 10 │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 20 ┆ 20 │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 3 ┆ 30 │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 4 ┆ 40 │
└─────┴─────┘
The performance of this will be quite good.
CodePudding user response:
I just found a possible solution:
df.with_column(
pl.when(pl.col("c").is_null())
.then(pl.col("b"))
.otherwise(pl.col("a")).alias("a")
)