What I wouldlike to do:
library(tidyverse)
diamonds |>
group_by(cut) |>
mutate(qt_25 = some_ideal_func_25_pctile(price))
I want to mutate a new column that, for each group, gets the 25 percentile of price.
E.g. for the cut 'Ideal':
diamonds |> filter(cut == 'Ideal') |> pull(price) |> quantile()
0% 25% 50% 75% 100%
326.0 878.0 1810.0 4678.5 18806.0
I would then want 878.0 repeated across all rows in the Ideal cut group.
How can I do this within a dplyr chain per my first block of code?
CodePudding user response:
You could simply use quantile()
s probs
argument (thanks to Axeman):
library(tidyverse)
diamonds %>%
group_by(cut) %>%
mutate(qt_25 = quantile(price, 0.25))
This returns
# A tibble: 53,940 x 11
# Groups: cut [5]
carat cut color clarity depth table price x y z qt_25
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43 878
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31 1046
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31 1145
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63 1046
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75 1145
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48 912
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47 912
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53 912
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49 2050.
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39 912
# ... with 53,930 more rows