Home > front end >  Removing observations conditionally (after use of MatchIt package) in R
Removing observations conditionally (after use of MatchIt package) in R

Time:04-20

I have used the package MatchIt to conduct an exact matching for treatment (treat = 1) and control groups (treat = 0) -- the matching was made through age. The variable subclass reveals the matched units.

I would like to have one control unit selected randomly for each treated unit if it is matched to more than one control. It is important that it be random.

If I have more than one treatment unit matched to only 1 control (case of subclass 4), I would like to discard such control unit as to keep the same number of controls and units for each subclass. In the end, I expect to have an equal number of observations for which treat = 1 and treat = 0.

My real dataset is huge and consists of more than a million subclasses.

structure(list(id = c("NSW1", "NSW57", "PSID6", "PSID84", "PSID147", 
"PSID349", "PSID361", "PSID400", "NSW2", "NSW6", "NSW9", "NSW60", 
"NSW77", "NSW80", "NSW127", "NSW161", "NSW169", "NSW177", "NSW179", 
"PSID15", "PSID31", "PSID41", "PSID62", "PSID92", "PSID93", "PSID150", 
"PSID167", "PSID178", "PSID254", "PSID292", "PSID300", "PSID308", 
"PSID309", "PSID314", "PSID330", "NSW3", "NSW55", "NSW109", "PSID1", 
"PSID69", "PSID91", "PSID165", "PSID166", "PSID302", "PSID378", 
"ASID9033", "ASID9034", "ASID9036"), treat = c(1L, 1L, 0L, 0L, 
0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L), age = c(37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 30L, 30L, 30L, 30L, 30L, 
30L, 30L, 30L, 30L, 30L, 29L, 29L, 29L), race = c("black", "black", 
"black", "hispan", "white", "white", "white", "black", "hispan", 
"black", "black", "white", "black", "black", "black", "black", 
"black", "hispan", "white", "black", "hispan", "black", "white", 
"white", "white", "hispan", "white", "white", "white", "white", 
"black", "black", "white", "white", "black", "black", "black", 
"black", "white", "black", "white", "white", "white", "white", 
"white", "black", "white", "black"), married = c(1L, 0L, 1L, 
0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 
1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 
0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L), subclass = c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L)), class = "data.frame", row.names = c(NA, 
-48L))

CodePudding user response:

Here's a (maybe a bit convoluted) way using group_split and map_dfr.

library(tidyverse)

df %>% 
  group_split(subclass) %>% 
  map_dfr(~ if(sum(.x$treat) > (nrow(.x) / 2)) bind_rows(.x[.x$treat == 0, ], sample_n(.x[.x$treat == 1, ], nrow(.x[.x$treat == 0, ]))) 
          else if(sum(.x$treat) < (nrow(.x) / 2)) bind_rows(.x[.x$treat == 1, ], sample_n(.x[.x$treat == 0, ], nrow(.x[.x$treat == 1, ]))) 
          else .x)

# A tibble: 34 x 6
   id      treat   age race   married subclass
   <chr>   <int> <int> <chr>    <int>    <int>
 1 NSW1        1    37 black        1        1
 2 NSW57       1    37 black        0        1
 3 PSID400     0    37 black        0        1
 4 PSID84      0    37 hispan       0        1
 5 NSW2        1    22 hispan       0        2
 6 NSW6        1    22 black        0        2
 7 NSW9        1    22 black        0        2
 8 NSW60       1    22 white        0        2
 9 NSW77       1    22 black        0        2
10 NSW80       1    22 black        0        2
# ... with 24 more rows

CodePudding user response:

Here's one simple approach

library(tidyverse)
set.seed(999)
mydata %>% 
  mutate(r = runif(n = nrow(mydata))) %>%
  arrange(r) %>%
  group_by(treat, subclass) %>% 
  mutate(max_r = max(r)) %>% 
  filter(r == max_r) %>% select(-c(r, max_r)) -> mydata.filtered

I first create a random number r, then I arrange the data based on r. Thereafter I calculate max(r) for each subclass x treat cell and drop everything where max(r) != r.

This results in 1 treated and 1 non-treated obs for each subclass.

> table(mydata.filtered$treat, mydata.filtered$subclass)
   
    1 2 3 4
  0 1 1 1 1
  1 1 1 1 1

data

mydata<- structure(list(id = c("NSW1", "NSW57", "PSID6", "PSID84", "PSID147", 
                      "PSID349", "PSID361", "PSID400", "NSW2", "NSW6", "NSW9", "NSW60", 
                      "NSW77", "NSW80", "NSW127", "NSW161", "NSW169", "NSW177", "NSW179", 
                      "PSID15", "PSID31", "PSID41", "PSID62", "PSID92", "PSID93", "PSID150", 
                      "PSID167", "PSID178", "PSID254", "PSID292", "PSID300", "PSID308", 
                      "PSID309", "PSID314", "PSID330", "NSW3", "NSW55", "NSW109", "PSID1", 
                      "PSID69", "PSID91", "PSID165", "PSID166", "PSID302", "PSID378", 
                      "ASID9033", "ASID9034", "ASID9036"), treat = c(1L, 1L, 0L, 0L, 
                                                                     0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 
                                                                     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
                                                                     1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L), age = c(37L, 
                                                                                                                              37L, 37L, 37L, 37L, 37L, 37L, 37L, 22L, 22L, 22L, 22L, 22L, 22L, 
                                                                                                                              22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
                                                                                                                              22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 30L, 30L, 30L, 30L, 30L, 
                                                                                                                              30L, 30L, 30L, 30L, 30L, 29L, 29L, 29L), race = c("black", "black", 
                                                                                                                                                                                "black", "hispan", "white", "white", "white", "black", "hispan", 
                                                                                                                                                                                "black", "black", "white", "black", "black", "black", "black", 
                                                                                                                                                                                "black", "hispan", "white", "black", "hispan", "black", "white", 
                                                                                                                                                                                "white", "white", "hispan", "white", "white", "white", "white", 
                                                                                                                                                                                "black", "black", "white", "white", "black", "black", "black",                                                                                                                                                                                 "black", "white", "black", "white", "white", "white", "white", 
                                                                                                                                                                                "white", "black", "white", "black"), married = c(1L, 0L, 1L, 
                                                                                                                                                                                                                                 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 
                                                                                                                                                                                                                                 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 
                                                                                                                                                                                                                                 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L), subclass = c(1L, 
                                                                                                                                                                                                                                                                                                   1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
                                                                                                                                                                                                                                                                                                   2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
                                                                                                                                                                                                                                                                                                   2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L)), class = "data.frame", row.names = c(NA, 
                                                                                                                                                                                                                                                                                                                                                                                                     -48L))

?MatchIt seems to also supply the ratio argument, which can be used to force 1-to-1 matching within the matching function call.

  • Related