In a previous question, solutions were given on how to compute the n-ary cartesian product of parameter packs (see here, here (and here but for tuples)). Basically, we consider the following wrapper:
template <class... Types>
struct pack {};
template <class... Packs>
struct pack_product {/* SOMETHING */}
template <class... Packs>
using pack_product_t = typename pack_product<Packs...>::type;
such that pack_product_t<pack<A0, A1>, pack<B0, B1, B2>, pack<C0, C1>>
produces the following:
pack<
pack<A0, B0, C0>, pack<A0, B0, C1>,
pack<A0, B1, C0>, pack<A0, B1, C1>,
pack<A0, B2, C0>, pack<A0, B2, C1>,
pack<A1, B0, C0>, pack<A1, B0, C1>,
pack<A1, B1, C0>, pack<A1, B1, C1>,
pack<A1, B2, C0>, pack<A1, B2, C1>,
>;
(again see here and here for solutions, even if I think they do not fully work when one of the input packs is the empty pack pack<>
). This corresponds to the n-ary cartesian product of sets A×B×C={(a0, b0, c0), ..., (a1, b2, c1)} (set of tuples from a set-theoretic standpoint).
As an important note, one of the tricky part was to produce just two levels of packs, and not n-nested packs in the result (as in pack<pack<pack<A0, B0>, C0>>, ...>
).
Now, what I would like to do is the combination of the n-ary cartesian product:
template <template <class> class Function, class... Packs>
struct pack_product_apply {
using type = /* SOMETHING */
};
template <template <class> class Function, class... Packs>
using pack_product_apply_t = typename pack_product_apply<Function, Packs...>::type;
which basically computes:
pack<
typename Function<pack<A0, B0, C0>>::type, typename Function<pack<A0, B0, C1>>::type,
typename Function<pack<A0, B1, C0>>::type, typename Function<pack<A0, B1, C1>>::type,
typename Function<pack<A0, B2, C0>>::type, typename Function<pack<A0, B2, C1>>::type,
typename Function<pack<A1, B0, C0>>::type, typename Function<pack<A1, B0, C1>>::type,
typename Function<pack<A1, B1, C0>>::type, typename Function<pack<A1, B1, C1>>::type,
typename Function<pack<A1, B2, C0>>::type, typename Function<pack<A1, B2, C1>>::type,
>;
and just skips the elements which do not compile thanks to SFINAE: for example if the versions with B1 do not provide a valid ::type
the result would just be:
pack<
typename Function<pack<A0, B0, C0>>::type, typename Function<pack<A0, B0, C1>>::type,
typename Function<pack<A0, B2, C0>>::type, typename Function<pack<A0, B2, C1>>::type,
typename Function<pack<A1, B0, C0>>::type, typename Function<pack<A1, B0, C1>>::type,
typename Function<pack<A1, B2, C0>>::type, typename Function<pack<A1, B2, C1>>::type,
>;
And example of input type function would be:
template <class Pack>
struct my_type_function;
template <class... Types>
struct my_type_function<pack<Types...>>: std::common_type<Types...> {};
Computing the cartesian product first and applying the function after on its result is a no-brainer. But I have the feeling (but I may be wrong) that it would be suboptimal from the compiler standpoint.
QUESTION: How to implement pack_product_apply
in a compiler-efficient way where the type function would be applied "on-the-fly" when computing each element of the product instead of computing all the element first and then applying the function?
CodePudding user response:
This works with O(1) instantiation depth
template<template<typename...> class F, int N, typename...>
struct fn_typelist {};
template<typename...>
struct typelist {};
template<template<typename...> class F, int N, typename... Ts>
typelist<fn_typelist<F, N, Ts>...> layered(typelist<Ts...>);
template<template<typename...> class F, typename... Ts, typename... Us>
auto operator (fn_typelist<F, sizeof...(Ts) sizeof...(Us), Ts...>&&,
fn_typelist<F, sizeof...(Ts) sizeof...(Us), Us...>&&)
-> F<Ts..., Us...>;
template<template<typename...> class F, int N, typename... Ts, typename... Us>
auto operator (const fn_typelist<F, N, Ts...>&,
const fn_typelist<F, N, Us...>&)
-> fn_typelist<F, N, Ts..., Us...>;
template<typename... Ts, typename... Us>
auto operator (typelist<Ts...>, typelist<Us...>)
-> typelist<Ts..., Us...>;
template<typename T, typename... Us>
auto operator*(typelist<T>, typelist<Us...>)
-> typelist<decltype(T{} Us{})...>;
template<typename... Ts, typename TL>
auto operator^(typelist<Ts...>, TL tl)
-> decltype(((typelist<Ts>{} * tl) ...));
template<template<typename...> class F, typename... TLs>
using product_apply_t = decltype((layered<F, sizeof...(TLs)>(TLs{}) ^ ...));
And you use as
struct A0;
struct A1;
struct B0;
struct B1;
struct C0;
struct C1;
struct C2;
using t1 = typelist<A0, A1>;
using t2 = typelist<B0, B1>;
using t3 = typelist<C0, C1, C2>;
template<typename...>
struct fn {};
using p1 = product_apply_t<fn, t1, t2>;
using p2 = product_apply_t<fn, t1, t2, t3>;
using expect1 = typelist<fn<A0, B0>,
fn<A0, B1>,
fn<A1, B0>,
fn<A1, B1>>;
using expect2 = typelist<fn<A0, B0, C0>,
fn<A0, B0, C1>,
fn<A0, B0, C2>,
fn<A0, B1, C0>,
fn<A0, B1, C1>,
fn<A0, B1, C2>,
fn<A1, B0, C0>,
fn<A1, B0, C1>,
fn<A1, B0, C2>,
fn<A1, B1, C0>,
fn<A1, B1, C1>,
fn<A1, B1, C2>>;
static_assert(std::is_same_v<p1, expect1>);
static_assert(std::is_same_v<p2, expect2>);
Where fn
can be swapped with any class template or template alias with suitable parameters.
This instantiates the first (n-1)-ary cartesian product then applies the provided meta function at the n-ary cartesian product. Not being familiar with compilers, I have no idea whether this confers any speedup in compilation times.
The implementation is arcane, if you want to ask about it, it likely means you should just stick with producing the pack and iterating. Or Boost.
CodePudding user response:
This is really the key insight in Boost.Mp11 is that the question you're asking here is really the same question as the other questions.
pack_product
is taking the cartesian product of a bunch of pack
s and turning them all into pack
s. So that's:
template <class... Packs>
using pack_product = mp_product<pack, Packs...>;
pack_product_apply
is the same thing. Or really, pack_product
is a special case of pack_product_apply
where the function you're applying to each list is pack
:
template <template <class...> class F, class... Packs>
using pack_product_apply = mp_product<F, Packs...>;
In other words, pack_product_apply
is mp_product
.
Now, your formulation is slightly different - you want to take a function that applies to a typelist (F<L>
) instead of a function that applies to a pack (F<Ts...>
). You can still do that, it's just that you need to pass something into mp_product
that first groups the pack (i.e. first applies pack
then F
):
template <template <class> class F, class... Packs>
using pack_product_apply = mp_product_q<mp_compose<pack, F>, Packs...>;