I've looked around but I can't find an answer to this!
I've imported a large number of datasets to R.
Each dataset contains information for a single year (ex. df_2012, df_2013, df_2014 etc).
All the datasets have the same variables/columns (ex. varA_2012 in df_2012 corresponds to varA_2013 in df_2013).
I want to create a df with my id variable and varA_2012, varB_2012, varA_2013, varB_2013, varA_2014, varB_2014 etc
I'm trying to create a loop that helps me extract the few columns that I'm interested in (varA_XXXX, varB_XXXX) in each data frame and then do a full join based on my id var.
I haven't used R in a very long time...
So far, I've tried this:
id <- c("France", "Belgium", "Spain")
varA_2012 <- c(1,2,3)
varB_2012 <- c(7,2,9)
varC_2012 <- c(1,56,0)
varD_2012 <- c(13,55,8)
varA_2013 <- c(34,3,56)
varB_2013 <- c(2,53,5)
varC_2013 <- c(24,3,45)
varD_2013 <- c(27,13,8)
varA_2014 <- c(9,10,5)
varB_2014 <- c(95,30,75)
varC_2014 <- c(99,0,51)
varD_2014 <- c(9,40,1)
df_2012 <-data.frame(id, varA_2012, varB_2012, varC_2012, varD_2012)
df_2013 <-data.frame(id, varA_2013, varB_2013, varC_2013, varD_2013)
df_2014 <-data.frame(id, varA_2014, varB_2014, varC_2014, varD_2014)
year = c(2012:2014)
for(i in 1:length(year)) {
df_[i] <- df_[I][df_[i]$id, df_[i]$varA_[i], df_[i]$varB_[i], ]
list2env(df_[i], .GlobalEnv)
}
panel_df <- Reduce(function(x, y) merge(x, y, by="if"), list(df_2012, df_2013, df_2014))
I know that there are probably loads of errors in here.
CodePudding user response:
Here are a couple of options; however, it's unclear what you want the expected output to look like.
If you want a wide format, then we can use tidyverse
to do:
library(tidyverse)
results <-
map(list(df_2012, df_2013, df_2014), function(x)
x %>% dplyr::select(id, starts_with("varA"), starts_with("varB"))) %>%
reduce(., function(x, y)
left_join(x, y, all = TRUE, by = "id"))
Output
id varA_2012 varB_2012 varA_2013 varB_2013 varA_2014 varB_2014
1 Belgium 2 2 3 53 10 30
2 France 1 7 34 2 9 95
3 Spain 3 9 56 5 5 75
However, if you need it in a long format, then we could pivot the data:
results %>%
pivot_longer(-id, names_to = c("variable", "year"), names_sep = "_")
Output
id variable year value
<chr> <chr> <chr> <dbl>
1 France varA 2012 1
2 France varB 2012 7
3 France varA 2013 34
4 France varB 2013 2
5 France varA 2014 9
6 France varB 2014 95
7 Belgium varA 2012 2
8 Belgium varB 2012 2
9 Belgium varA 2013 3
10 Belgium varB 2013 53
11 Belgium varA 2014 10
12 Belgium varB 2014 30
13 Spain varA 2012 3
14 Spain varB 2012 9
15 Spain varA 2013 56
16 Spain varB 2013 5
17 Spain varA 2014 5
18 Spain varB 2014 75
Or if using base R for the wide format, then we can do:
results <-
lapply(list(df_2012, df_2013, df_2014), function(x)
subset(x, select = c("id", names(x)[startsWith(names(x), "varA")], names(x)[startsWith(names(x), "varB")])))
results <-
Reduce(function(x, y)
merge(x, y, all = TRUE, by = "id"), results)
CodePudding user response:
From your initial for
loop attempt, it seems the code below may help
> (df <- Reduce(merge, list(df_2012, df_2013, df_2014)))[grepl("^(id|var(A|B))",names(df))]
id varA_2012 varB_2012 varA_2013 varB_2013 varA_2014 varB_2014
1 Belgium 2 2 3 53 10 30
2 France 1 7 34 2 9 95
3 Spain 3 9 56 5 5 75