I want to sort two nested lists according to value of one list.
predictions = np.array([[0, 1, 2, 3], [3, 2, 1, 0], [1, 2, 3, 0], [-1, -1, -1, -1]])
test_interaction_matrix = np.array([[1, 0, 0, 0], [0, 1, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]])
for i,(p,t) in enumerate(zip(predictions, test_interaction_matrix)):
list1, list2 = (list(t) for t in zip(*sorted(zip(p, t))))
print(list1, list2)
The sorting criterion depend on the test_interaction_matrix value, if it is one then bring the corresponding element in prediction in the front. The change of position should happen in both lists. For instance I want the first list in predictions to look like [0,3,2,1] with corresponding list in test_interaction_matrix like [1,0,0,0], for the next [2,0,3,1] and [1,1,0,0] and so on. Now printing the list I don't get the correct result with my code above. Thanks!
CodePudding user response:
You can use a list comprehension for fast approach:
predictions = np.array([[0, 1, 2, 3], [3, 2, 1, 0], [1, 2, 3, 0], [-1, -1, -1, -1]])
test_interaction_matrix = [[1, 0, 0, 0], [0, 1, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]])
pred = predictions.tolist()
order = test_interaction_matrix.tolist()
[list(zip(*sorted(zip(pred[i], order[i]), key=lambda pair: (pair[1], pair[0]), reverse=True)))[0] for i in range(len(pred))]
This code cycles over every position in the array (for i in range(len(pred))
).
Step 1: For each position, it pairs up the elements in the arrays (zip(pred[i], order[i])
):
[[(0,1), (1,0), (2,0), (3,0)], [(3,0), (2,1), (1,0), (0,1)], [...], ...]
Step 2: Sort the pairs inside the arrays (sorted(zip(...), key=lambda pair: (pair[1], pair[0]), reverse=True)
):
The key
parameters indicates how it will apply ordering: it will prioritize your test_interaction_matrix values, then the prediction values. Reverse
is set to True so that you'll get descendent order.
[[(0,1), (3,0), (2,0), (1,0)], [(2,1), (0,1), (3,0), (1,0)], [...], ...]
Step 3: Will rebuild the original vectors test_interaction_matrix and predictions (list(zip(*sorted(...)))
), in few words it's the inverse operation of Step 1:
[[(0, 3, 2, 1), (1, 0, 0, 0)], [(2, 0, 3, 1), (1, 1, 0, 0)], [...], ...]
Step 4: Get the first array (list(...)[0]
), which corresponds to the predictions one, this time ordered:
[(0, 3, 2, 1), (2, 0, 3, 1), (3, 2, 1, 0), (-1, -1, -1, -1)]
CodePudding user response:
If I understand the question correctly, the following should work:
import numpy as np
predictions = np.array([[0, 1, 2, 3],
[3, 2, 1, 0],
[1, 2, 3, 0],
[-1, -1, -1, -1]])
test_interaction_matrix = np.array([[1, 0, 0, 0],
[0, 1, 0, 1],
[0, 0, 0, 0],
[0, 0, 0, 0]])
r = predictions.shape[0]
sp = np.flip(predictions.argsort(axis=1), axis=1)
p = predictions[np.c_[:r], sp]
t = test_interaction_matrix[np.c_[:r], sp]
s = (-t).argsort(axis=1, kind="stable")
p = p[np.c_[:r], s]
t = t[np.c_[:r], s]
print(f"p:\n{p}\n\nt:\n{t}")
It gives:
p:
[[ 0 3 2 1]
[ 2 0 3 1]
[ 3 2 1 0]
[-1 -1 -1 -1]]
t:
[[1 0 0 0]
[1 1 0 0]
[0 0 0 0]
[0 0 0 0]]