I have a tricky merge that I usually do in Excel via various formulas and I want to automate with R.
I have 2 dataframes, one called inputs looks like this:
id v1 v2 v3
1 A A C
2 B D F
3 T T A
4 A F C
5 F F F
And another called df
id v
1 1
1 2
1 3
2 2
3 1
I would like to combined them based on the id and v values such that I get
id v key
1 1 A
1 2 A
1 3 C
2 2 D
3 1 T
So I'm matching on id and then on the column from v1 thru v2, in the first example you will see that I match id = 1 and v1 since the value of v equals 1. In Excel I do this combining creatively VLOOKUP and HLOOKUP but I want to make this simpler in R. Dataframe examples are simplified versions as the I have more records and values go from v1 thru up to 50.
Thanks!
CodePudding user response:
You can use two column matrices as index arguments to "[" so this is a one liner. (Not the names of the data objects are d1
and d2
. I'd opposed to using df
as a data object name.)
d1[-1][ data.matrix(d2)] # returns [1] "A" "A" "C" "D" "T"
So full solution is:
cbind( d2, key= d1[-1][ data.matrix(d2)] )
id v key
1 1 1 A
2 1 2 A
3 1 3 C
4 2 2 D
5 3 1 T
CodePudding user response:
You could use pivot_longer
:
library(tidyr)
library(dplyr)
key %>% pivot_longer(!id,names_prefix='v',names_to = 'v') %>%
mutate(v=as.numeric(v)) %>%
inner_join(df)
Joining, by = c("id", "v")
# A tibble: 5 × 3
id v value
<int> <dbl> <chr>
1 1 1 A
2 1 2 A
3 1 3 C
4 2 2 D
5 3 1 T
Data:
key <- read.table(text="
id v1 v2 v3
1 A A C
2 B D F
3 T T A
4 A F C
5 F F F",header=T)
df <- read.table(text="
id v
1 1
1 2
1 3
2 2
3 1 ",header=T)
CodePudding user response:
Try this
x <- "
id v1 v2 v3
1 A A C
2 B D F
3 T T A
4 A F C
5 F F F
"
y <- "
id v
1 1
1 2
1 3
2 2
3 1
"
df <- read.table(textConnection(x) , header = TRUE)
df2 <- read.table(textConnection(y) , header = TRUE)
key <- c()
for (i in 1:nrow(df2)) {
key <- append(df[df2$id[i],(df2$v[i] 1L)] , key)
}
df2$key <- rev(key)
df2
># id v key
># 1 1 1 A
># 2 1 2 A
># 3 1 3 C
># 4 2 2 D
># 5 3 1 T
Created on 2022-06-06 by the reprex package (v2.0.1)