I currently have a column in my dataframe called step
, that I want to use to set a counter on. It contains a bunch of repeating numbers. I want to create a new column against this, that has a counter that increments when a certain condition is met. The condition is when the number changes for a fourth time in the column step
, the counter will increment by 1, and then repeat the process. Here is an example of my code, and what I'd like to acheive:
df = pd.DataFrame({"step": [1,1,1,2,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9,7,7,
7,8,8,8,9,9,7,7,8,8,8,9,9,9,7]})
df['counter'] = df['step'].cumsum() #This will increment when it sees a fourth different number, and repeat
So ideally, my output would look like this:
print(df['step'])
[1,1,1,2,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9,7,7,
7,8,8,8,9,9,7,7,8,8,8,9,9,9,7,7]
print(df['counter'])
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,
3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5]
The numbers in step will vary, but the counter will always increment when the fourth different value in the sequence is identified and reset the counter. I know I could probably do this with if statements, but my dataframe is large and I would rather do it in a faster way of comparison, if possible. Any help would be greatly appreciated!
CodePudding user response:
You can convert your step
column into categories and then count on the category codes:
import pandas as pd
df = pd.DataFrame({"step": [1,1,1,2,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9,10]})
df["counter"] = df.step.astype("category").values.codes // 3
Result:
step counter
0 1 0
1 1 0
2 1 0
3 2 0
4 2 0
5 2 0
6 2 0
7 3 0
8 3 0
9 3 0
10 4 1
11 4 1
12 4 1
13 5 1
14 5 1
15 5 1
16 5 1
17 6 1
18 6 1
19 6 1
20 7 2
21 7 2
22 7 2
23 7 2
24 8 2
25 8 2
26 8 2
27 8 2
28 8 2
29 9 2
30 9 2
31 9 2
32 9 2
33 10 3
Update for changed data (see comment):
df = pd.DataFrame({"step": [1,1,1,2,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9,7,7,7,8,8,8,9,9,7,7,8,8,8,9,9,9,7,7]})
df['counter'] = (df.step.diff().fillna(0).ne(0).cumsum() // 3).astype(int)
step counter
0 1 0
1 1 0
2 1 0
3 2 0
4 2 0
5 2 0
6 2 0
7 3 0
8 3 0
9 3 0
10 4 1
11 4 1
12 4 1
13 5 1
14 5 1
15 5 1
16 5 1
17 6 1
18 6 1
19 6 1
20 7 2
21 7 2
22 7 2
23 7 2
24 8 2
25 8 2
26 8 2
27 8 2
28 8 2
29 9 2
30 9 2
31 9 2
32 9 2
33 7 3
34 7 3
35 7 3
36 8 3
37 8 3
38 8 3
39 9 3
40 9 3
41 7 4
42 7 4
43 8 4
44 8 4
45 8 4
46 9 4
47 9 4
48 9 4
49 7 5
50 7 5
CodePudding user response:
Compare the current and previous row in step
column to identify boundaries(location of transitions), then use cumsum
to assign number to groups of rows and floor divide by 3 to create counter
m = df.step != df.step.shift()
df['counter'] = (m.cumsum() - 1) // 3
step counter
0 1 0
1 1 0
2 1 0
3 2 0
4 2 0
5 2 0
6 2 0
7 3 0
8 3 0
9 3 0
10 4 1
11 4 1
12 4 1
13 5 1
14 5 1
15 5 1
16 5 1
17 6 1
18 6 1
19 6 1
20 7 2
21 7 2
22 7 2
23 7 2
24 8 2
25 8 2
26 8 2
27 8 2
28 8 2
29 9 2
30 9 2
31 9 2
32 9 2
33 7 3
34 7 3
35 7 3
36 8 3
37 8 3
38 8 3
39 9 3
40 9 3
41 7 4
42 7 4
43 8 4
44 8 4
45 8 4
46 9 4
47 9 4
48 9 4
49 7 5