Based on the code and data below, is there a way to add 15%
after each 10%
to show that the values are greater/less than or equal to /-
15%
on the x-axis
?
Please note that one of the datasets does not have 15
in the Value
column
I tried using scale_x_discrete
with the limits
argument, but it doesn't work.
Desired x-axis
order on both the plots:
15% 10% 0 10% 15%
Data (pop_hisp_df
):
structure(list(age_group = c("< 5 years", "5 - 14", "15 - 24",
"25 - 34", "35 - 44", "45 - 54", "55 - 64", "65 - 74",
"75 - 84", "85 ", "< 5 years", "5 - 14", "15 - 24", "25 - 34",
"35 - 44", "45 - 54", "55 - 64", "65 - 74", "75 - 84",
"85 "), Type = c("Males", "Males", "Males", "Males", "Males",
"Males", "Males", "Males", "Males", "Males", "Females", "Females",
"Females", "Females", "Females", "Females", "Females", "Females",
"Females", "Females"), Value = c(-6, -13, -13, -15, -17, -15,
-11, -6, -3, -1, 6, 12, 12, 14, 16, 15, 12, 7, 4, 2)), row.names = c(NA,
-20L), class = c("tbl_df", "tbl", "data.frame"))
pop_gen_df
:
structure(list(age_group = c("< 5 years", "5 - 14", "15 - 24",
"25 - 34", "35 - 44", "45 - 54", "55 - 64", "65 - 74",
"75 - 84", "85 ", "< 5 years", "5 - 14", "15 - 24", "25 - 34",
"35 - 44", "45 - 54", "55 - 64", "65 - 74", "75 - 84",
"85 "), Type = c("Males", "Males", "Males", "Males", "Males",
"Males", "Males", "Males", "Males", "Males", "Females", "Females",
"Females", "Females", "Females", "Females", "Females", "Females",
"Females", "Females"), Value = c(-6, -12, -12, -14, -13, -14,
-13, -9, -4, -2, 6, 11, 11, 13, 13, 14, 13, 10, 5, 3)), row.names = c(NA,
-20L), class = c("tbl_df", "tbl", "data.frame"))
Code:
library(tidyverse)
library(plotly)
# Plot
gg_pop_hisp = ggplot(pop_hisp_df, aes( x = forcats::as_factor(age_group), y = Value, fill = Type))
geom_bar(data = subset(pop_hisp_df, Type == "females"), stat = "identity")
geom_bar(data = subset(pop_hisp_df, Type == "males"), stat = "identity")
scale_y_continuous(labels = function(z) paste0(abs(z), "%")) # CHANGE
scale_fill_manual(name = "", values = c("females"="#FC921F", "males"="#149ECE"), labels = c("Females", "Males"))
ggtitle("HISPANIC POPULATION BY GENDER AND AGE GROUP")
labs(x = "PERCENTAGE POPULATION", y = "AGE GROUPS", fill = "Gender")
theme_minimal()
theme(legend.position="bottom")
coord_flip()
gg_pop_gen = ggplot(pop_gen_df, aes(x = forcats::as_factor(age_group), y = Value, fill = Type))
geom_bar(data = subset(pop_hisp_df, Type == "Females"), stat = "identity")
geom_bar(data = subset(pop_hisp_df, Type == "Males"), stat = "identity")
scale_y_continuous(labels = function(z) paste0(abs(z), "%")) # CHANGE
scale_fill_manual(name = "", values = c("Females"="#ED5151", "Males"="#6B6BD6"), labels = c("Females", "Males"))
ggtitle("TOTAL POPULATION BY AGE AND GENDER")
labs(x = "PERCENTAGE POPULATION", y = "AGE GROUPS", fill = "Gender")
theme_minimal()
theme(legend.position="bottom")
coord_flip()
# Interactive and place legend at the bottom
ggplotly(gg_pop_hisp) %>%
layout(
legend = list(
orientation = 'h', x = 0.3, y = -0.1,
title = list(text = '')
)
)
ggplotly(gg_pop_gen) %>%
layout(
legend = list(
orientation = 'h', x = 0.3, y = -0.3,
title = list(text = '')
)
)
CodePudding user response:
You can change your scale_y_continuous
for both plots to :
scale_y_continuous(
limits=c(-20,20),
breaks=c(-15,-10,0,10,15),
labels=paste0(c(15,10,0,10,15),"%")
)
Full Code:
library(tidyverse)
library(plotly)
# Plot
gg_pop_hisp = ggplot(pop_hisp_df, aes( x = forcats::as_factor(age_group), y = Value, fill = Type))
geom_bar(data = subset(pop_hisp_df, Type == "Females"), stat = "identity")
geom_bar(data = subset(pop_hisp_df, Type == "Males"), stat = "identity")
#scale_y_continuous(labels = function(z) paste0(abs(z), "%")) # CHANGE
scale_y_continuous(
limits=c(-20,20),
breaks=c(-15,-10,0,10,15),
labels=paste0(c(15,10,0,10,15),"%")
)
scale_fill_manual(name = "", values = c("Females"="#FC921F", "Males"="#149ECE"), labels = c("Females", "Males"))
ggtitle("HISPANIC POPULATION BY GENDER AND AGE GROUP")
labs(x = "PERCENTAGE POPULATION", y = "AGE GROUPS", fill = "Gender")
theme_minimal()
theme(legend.position="bottom")
coord_flip()
gg_pop_hisp
gg_pop_gen = ggplot(pop_gen_df, aes(x = forcats::as_factor(age_group), y = Value, fill = Type))
geom_bar(data = subset(pop_gen_df, Type == "Females"), stat = "identity")
geom_bar(data = subset(pop_gen_df, Type == "Males"), stat = "identity")
#scale_y_continuous(labels = function(z) paste0(abs(z), "%")) # CHANGE
scale_y_continuous(
limits=c(-20,20),
breaks=c(-15,-10,0,10,15),
labels=paste0(c(15,10,0,10,15),"%")
)
scale_fill_manual(name = "", values = c("Females"="#ED5151", "Males"="#6B6BD6"), labels = c("Females", "Males"))
ggtitle("TOTAL POPULATION BY AGE AND GENDER")
labs(x = "PERCENTAGE POPULATION", y = "AGE GROUPS", fill = "Gender")
theme_minimal()
theme(legend.position="bottom")
coord_flip()
# Interactive and place legend at the bottom
ggplotly(gg_pop_hisp) %>%
layout(
legend = list(
orientation = 'h', x = 0.3, y = -0.1,
title = list(text = '')
)
)
ggplotly(gg_pop_gen) %>%
layout(
legend = list(
orientation = 'h', x = 0.3, y = -0.3,
title = list(text = '')
)
)