E.g. if I have
import polars as pl
df = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
how would I find the cumulative sum of each row?
Expected output:
a b
0 1 5
1 2 7
2 3 9
Here's the equivalent in pandas:
>>> import pandas as pd
>>> pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]}).cumsum(axis=1)
a b
0 1 5
1 2 7
2 3 9
but I can't figure out how to do it in polars
CodePudding user response:
Polars is column-oriented, and as such does not have the concept of a axis
. Still, we can use the list evaluation context to solve this.
First, let's expand you data slightly:
df = pl.DataFrame({
"id": ['a', 'b', 'c'],
"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9],
})
df
shape: (3, 4)
┌─────┬─────┬─────┬─────┐
│ id ┆ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╡
│ a ┆ 1 ┆ 4 ┆ 7 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ b ┆ 2 ┆ 5 ┆ 8 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ c ┆ 3 ┆ 6 ┆ 9 │
└─────┴─────┴─────┴─────┘
The Algorithm
Here's a general-purpose performant algorithm that will solve this. We'll walk through it below.
my_cols = [s.name for s in df if s.is_numeric()]
(
df
.with_column(
pl.concat_list(my_cols)
.arr.eval(pl.element().cumsum())
.arr.to_struct(name_generator=lambda idx: my_cols[idx])
.alias('result')
)
.drop(my_cols)
.unnest('result')
)
shape: (3, 4)
┌─────┬─────┬─────┬─────┐
│ id ┆ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╡
│ a ┆ 1 ┆ 5 ┆ 12 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ b ┆ 2 ┆ 7 ┆ 15 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ c ┆ 3 ┆ 9 ┆ 18 │
└─────┴─────┴─────┴─────┘
How it works
First, we'll select the names of the numeric columns. You can name these explicitly if you like, e.g., my_cols=['a','b','c']
.
Next, we'll gather up the column values into a list using polars.concat_list
.
my_cols = [s.name for s in df if s.is_numeric()]
(
df
.with_column(
pl.concat_list(my_cols)
.alias('result')
)
)
shape: (3, 5)
┌─────┬─────┬─────┬─────┬───────────┐
│ id ┆ a ┆ b ┆ c ┆ result │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 ┆ list[i64] │
╞═════╪═════╪═════╪═════╪═══════════╡
│ a ┆ 1 ┆ 4 ┆ 7 ┆ [1, 4, 7] │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ b ┆ 2 ┆ 5 ┆ 8 ┆ [2, 5, 8] │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ c ┆ 3 ┆ 6 ┆ 9 ┆ [3, 6, 9] │
└─────┴─────┴─────┴─────┴───────────┘
From here, we'll use the arr.eval
context to run our cumsum
on the list.
my_cols = [s.name for s in df if s.is_numeric()]
(
df
.with_column(
pl.concat_list(my_cols)
.arr.eval(pl.element().cumsum())
.alias('result')
)
)
shape: (3, 5)
┌─────┬─────┬─────┬─────┬────────────┐
│ id ┆ a ┆ b ┆ c ┆ result │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 ┆ list[i64] │
╞═════╪═════╪═════╪═════╪════════════╡
│ a ┆ 1 ┆ 4 ┆ 7 ┆ [1, 5, 12] │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
│ b ┆ 2 ┆ 5 ┆ 8 ┆ [2, 7, 15] │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
│ c ┆ 3 ┆ 6 ┆ 9 ┆ [3, 9, 18] │
└─────┴─────┴─────┴─────┴────────────┘
Next, we'll break the list into a struct using arr.to_struct
, and name the fields the corresponding names from our selected numeric columns.
my_cols = [s.name for s in df if s.is_numeric()]
(
df
.with_column(
pl.concat_list(my_cols)
.arr.eval(pl.element().cumsum())
.arr.to_struct(name_generator=lambda idx: my_cols[idx])
.alias('result')
)
)
shape: (3, 5)
┌─────┬─────┬─────┬─────┬───────────┐
│ id ┆ a ┆ b ┆ c ┆ result │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 ┆ struct[3] │
╞═════╪═════╪═════╪═════╪═══════════╡
│ a ┆ 1 ┆ 4 ┆ 7 ┆ {1,5,12} │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ b ┆ 2 ┆ 5 ┆ 8 ┆ {2,7,15} │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ c ┆ 3 ┆ 6 ┆ 9 ┆ {3,9,18} │
└─────┴─────┴─────┴─────┴───────────┘
And finally, we'll use unnest
to break the struct into columns. (But first we must drop the original columns or else we'll get two columns with the same name.)
my_cols = [s.name for s in df if s.is_numeric()]
(
df
.with_column(
pl.concat_list(my_cols)
.arr.eval(pl.element().cumsum())
.arr.to_struct(name_generator=lambda idx: my_cols[idx])
.alias('result')
)
.drop(my_cols)
.unnest('result')
)
shape: (3, 4)
┌─────┬─────┬─────┬─────┐
│ id ┆ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╡
│ a ┆ 1 ┆ 5 ┆ 12 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ b ┆ 2 ┆ 7 ┆ 15 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ c ┆ 3 ┆ 9 ┆ 18 │
└─────┴─────┴─────┴─────┘
CodePudding user response:
There may be a simpler and faster way, but here is the programmatic solution.
- Concatenate the values along the columns into a list
- Calculate the cumulative sum over the list (the result is still a list)
- Get values for each column in the result
import polars as pl
df = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df.select([
pl.concat_list(pl.all())
.arr.eval(pl.element().cumsum())
.alias('cs')
]).select([
pl.col('cs').arr.get(i).alias(name)
for i, name in enumerate(df.columns)
])
shape: (3, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1 ┆ 5 │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 2 ┆ 7 │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 3 ┆ 9 │
└─────┴─────┘