I have a multiindex column dataframe. I want to preserve the existing index, but move a level from the multindex columns to become a sublevel of the index instead.
I can't figure out the correct incantation of melt/stack/unstack/pivot
to move from what i have to what i want. Unstacking()
turned things into a series and lost the original date index.
names = ['mike', 'matt', 'dave']
details = ['bla', 'foo', ]
columns = pd.MultiIndex.from_tuples((n,d) for n in names for d in details)
index = pd.date_range(start="2022-10-30", end="2022-11-3" ,freq="d", )
have = pd.DataFrame(np.random.randint(0,100, size = (5,6)), index=index, columns=columns)
have
want_columns = details
want_index = pd.MultiIndex.from_product([index, names])
want = pd.DataFrame(np.random.randint(0,100, size = (15,2)), index=want_index, columns=want_columns)
want
CodePudding user response:
Use DataFrame.stack
with level=0
:
print (have.stack(level=0))
bla foo
2022-10-30 dave 88 18
matt 49 55
mike 92 45
2022-10-31 dave 33 27
matt 53 41
mike 24 16
2022-11-01 dave 48 19
matt 94 75
mike 11 19
2022-11-02 dave 16 90
matt 14 93
mike 38 72
2022-11-03 dave 80 15
matt 97 2
mike 11 94