I have the following dataframe
data = [[[[[1, 2, 0], [1]],[[1, 2], [4]]],
[[[[1, 2], [4]]]], [[[1]]]], [[[[1, 2, 0], [1]],[[1, 2], [4]]],
[[[[1, 2], [4]]]], [[[1]]]]]
df = pd.DataFrame(data)
Also, I have a second dataframe df2
:
data2 = [[1, 10], [1, 15], [1, 14], [1, 20], [1, 18]]
df2 = pd.DataFrame(data2, columns=['dir', 'line'])
The values of the nested lists of df
represent the Index
of df2
. I would like to replace the values of the nested lists of df
with the values of the column line of df2
. The expected output is the following:
finalData = [[[[[15, 14, 10], [15]],[[15, 14], [20]]],
[[[[15, 14], [20]]]], [[[15]]]], [[[[15, 14, 10], [15]],[[15, 14], [20]]],
[[[[15, 14], [29]]]], [[[15]]]]]
finaldf = pd.DataFrame(finalData)
CodePudding user response:
Try this recursive solution
data = [[[[[1, 2, 0], [1]],[[1, 2], [4]]],
[[[[1, 2], [4]]]], [[[1]]]], [[[[1, 2, 0], [1]],[[1, 2], [4]]],
[[[[1, 2], [4]]]], [[[1]]]]]
data2 = [[1, 10], [1, 15], [1, 14], [1, 20], [1, 18]]
def new_data(data, data2):
res = []
for i in data:
if isinstance(i, list):
res.append(new_data(i, data2))
else:
res.append(data2[i][1])
return res
final_data = new_data(data, data2)
print(final_data)
# output:
[[[[[15, 14, 10], [15]], [[15, 14], [18]]], [[[[15, 14], [18]]]], [[[15]]]],
[[[[15, 14, 10], [15]], [[15, 14], [18]]], [[[[15, 14], [18]]]], [[[15]]]]]
CodePudding user response:
Here you are.
data = [[[[[1, 2, 0], [1]],[[1, 2], [4]]],
[[[[1, 2], [4]]]], [[[1]]]], [[[[1, 2, 0], [1]],[[1, 2], [4]]],
[[[[1, 2], [4]]]], [[[1]]]]]
df = pd.DataFrame(data)
data2 = [[1, 10], [1, 15], [1, 14], [1, 20], [1, 18]]
df2 = pd.DataFrame(data2, columns=['dir', 'line'])
def fn(index):
if isinstance(index, list):
return [fn(i) for i in index]
else:
return df2['line'][index]
final = df.applymap(fn)