Home > front end >  Parse error when importing csv dataframe with dask and pandas
Parse error when importing csv dataframe with dask and pandas

Time:11-14

I am trying to import a very large .csv file as:

import dask.dataframe as dd
import pandas as pd
#TO DO

dd_subf1_small = dd.read_csv('subf1_small.csv', dtype={'Unnamed: 0': 'float64','oecd_subfield':'object','paperid':'object'}, sep=None, engine = 'python').persist()

but I am getting the following error:

---------------------------------------------------------------------------
ParserError                               Traceback (most recent call last)
Cell In [1], line 5
      2 import pandas as pd
      3 #TO DO
----> 5 dd_subf1_small = dd.read_csv('subf1_small.csv', dtype={'Unnamed: 0': 'float64','oecd_subfield':'object','paperid':'object'}, sep=None, engine = 'python').persist()

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/base.py:288, in DaskMethodsMixin.persist(self, **kwargs)
    249 def persist(self, **kwargs):
    250     """Persist this dask collection into memory
    251 
    252     This turns a lazy Dask collection into a Dask collection with the same
   (...)
    286     dask.base.persist
    287     """
--> 288     (result,) = persist(self, traverse=False, **kwargs)
    289     return result

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/base.py:904, in persist(traverse, optimize_graph, scheduler, *args, **kwargs)
    901     keys.extend(a_keys)
    902     postpersists.append((rebuild, a_keys, state))
--> 904 results = schedule(dsk, keys, **kwargs)
    905 d = dict(zip(keys, results))
    906 results2 = [r({k: d[k] for k in ks}, *s) for r, ks, s in postpersists]

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/threaded.py:89, in get(dsk, keys, cache, num_workers, pool, **kwargs)
     86     elif isinstance(pool, multiprocessing.pool.Pool):
     87         pool = MultiprocessingPoolExecutor(pool)
---> 89 results = get_async(
     90     pool.submit,
     91     pool._max_workers,
     92     dsk,
     93     keys,
     94     cache=cache,
     95     get_id=_thread_get_id,
     96     pack_exception=pack_exception,
     97     **kwargs,
     98 )
    100 # Cleanup pools associated to dead threads
    101 with pools_lock:

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/local.py:511, in get_async(submit, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, chunksize, **kwargs)
    509         _execute_task(task, data)  # Re-execute locally
    510     else:
--> 511         raise_exception(exc, tb)
    512 res, worker_id = loads(res_info)
    513 state["cache"][key] = res

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/local.py:319, in reraise(exc, tb)
    317 if exc.__traceback__ is not tb:
    318     raise exc.with_traceback(tb)
--> 319 raise exc

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/local.py:224, in execute_task(key, task_info, dumps, loads, get_id, pack_exception)
    222 try:
    223     task, data = loads(task_info)
--> 224     result = _execute_task(task, data)
    225     id = get_id()
    226     result = dumps((result, id))

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/core.py:119, in _execute_task(arg, cache, dsk)
    115     func, args = arg[0], arg[1:]
    116     # Note: Don't assign the subtask results to a variable. numpy detects
    117     # temporaries by their reference count and can execute certain
    118     # operations in-place.
--> 119     return func(*(_execute_task(a, cache) for a in args))
    120 elif not ishashable(arg):
    121     return arg

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/optimization.py:990, in SubgraphCallable.__call__(self, *args)
    988 if not len(args) == len(self.inkeys):
    989     raise ValueError("Expected %d args, got %d" % (len(self.inkeys), len(args)))
--> 990 return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/core.py:149, in get(dsk, out, cache)
    147 for key in toposort(dsk):
    148     task = dsk[key]
--> 149     result = _execute_task(task, cache)
    150     cache[key] = result
    151 result = _execute_task(out, cache)

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/core.py:119, in _execute_task(arg, cache, dsk)
    115     func, args = arg[0], arg[1:]
    116     # Note: Don't assign the subtask results to a variable. numpy detects
    117     # temporaries by their reference count and can execute certain
    118     # operations in-place.
--> 119     return func(*(_execute_task(a, cache) for a in args))
    120 elif not ishashable(arg):
    121     return arg

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/dataframe/io/csv.py:129, in CSVFunctionWrapper.__call__(self, part)
    126         rest_kwargs["usecols"] = columns
    128 # Call `pandas_read_text`
--> 129 df = pandas_read_text(
    130     self.reader,
    131     block,
    132     self.header,
    133     rest_kwargs,
    134     self.dtypes,
    135     columns,
    136     write_header,
    137     self.enforce,
    138     path_info,
    139 )
    140 if project_after_read:
    141     return df[self.columns]

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/dask/dataframe/io/csv.py:182, in pandas_read_text(reader, b, header, kwargs, dtypes, columns, write_header, enforce, path)
    180 bio.write(b)
    181 bio.seek(0)
--> 182 df = reader(bio, **kwargs)
    183 if dtypes:
    184     coerce_dtypes(df, dtypes)

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/pandas/util/_decorators.py:311, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
    305 if len(args) > num_allow_args:
    306     warnings.warn(
    307         msg.format(arguments=arguments),
    308         FutureWarning,
    309         stacklevel=stacklevel,
    310     )
--> 311 return func(*args, **kwargs)

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/pandas/io/parsers/readers.py:678, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)
    663 kwds_defaults = _refine_defaults_read(
    664     dialect,
    665     delimiter,
   (...)
    674     defaults={"delimiter": ","},
    675 )
    676 kwds.update(kwds_defaults)
--> 678 return _read(filepath_or_buffer, kwds)

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/pandas/io/parsers/readers.py:581, in _read(filepath_or_buffer, kwds)
    578     return parser
    580 with parser:
--> 581     return parser.read(nrows)

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/pandas/io/parsers/readers.py:1253, in TextFileReader.read(self, nrows)
   1251 nrows = validate_integer("nrows", nrows)
   1252 try:
-> 1253     index, columns, col_dict = self._engine.read(nrows)
   1254 except Exception:
   1255     self.close()

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/pandas/io/parsers/python_parser.py:270, in PythonParser.read(self, rows)
    267     indexnamerow = content[0]
    268     content = content[1:]
--> 270 alldata = self._rows_to_cols(content)
    271 data, columns = self._exclude_implicit_index(alldata)
    273 conv_data = self._convert_data(data)

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/pandas/io/parsers/python_parser.py:1013, in PythonParser._rows_to_cols(self, content)
   1007             reason = (
   1008                 "Error could possibly be due to quotes being "
   1009                 "ignored when a multi-char delimiter is used."
   1010             )
   1011             msg  = ". "   reason
-> 1013         self._alert_malformed(msg, row_num   1)
   1015 # see gh-13320
   1016 zipped_content = list(lib.to_object_array(content, min_width=col_len).T)

File ~/opt/anaconda3/envs/bocconi/lib/python3.8/site-packages/pandas/io/parsers/python_parser.py:739, in PythonParser._alert_malformed(self, msg, row_num)
    722 """
    723 Alert a user about a malformed row, depending on value of
    724 `self.on_bad_lines` enum.
   (...)
    736     even though we 0-index internally.
    737 """
    738 if self.on_bad_lines == self.BadLineHandleMethod.ERROR:
--> 739     raise ParserError(msg)
    740 elif self.on_bad_lines == self.BadLineHandleMethod.WARN:
    741     base = f"Skipping line {row_num}: "

ParserError: Expected 3 fields in line 1811036, saw 5

Actually i don't know how the data are made as the csv file is 36gb and did not manage to open. I saw another question where the erro was passing header=None which I am not doing.

How can I avoid the above error?

Thanks!

CodePudding user response:

As the error says, your CSV file probably contains rows with 5 values instead of 3.

You have two options:

  1. Found those rows and fix/remove them from the file. This might be challenging given the file is huge.
  2. use paramter on_bad_lines="skip" to let pandas skip them and continue loading the file.

Learn more about on_bad_lines here: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

Also, I noticed you are using sep=None. Why? are the values in each row seperated by nothing? that doesn't make sense. The default (and most common delimiter (aka separator) is comma (,)). Post here an example of 3 lines from the file so I could assist with that.

  • Related