Home > front end >  Convert CSV to JSON using python pandas
Convert CSV to JSON using python pandas

Time:11-22

I have an CSV file of having data I want to convert into JSON format but I get issue about the formation.

Data input in csv file:

csv

Full CSV: rarities.csv

I have tried this code but it doesn't get the desired result.

Here is the code :

import pandas as pd

df = pd.read_csv(r'rarities.csv')

df.to_json(r'rarities.json', orient='records')

properties name case doesn't matter

The data format I want in JSON:

[
 {
  "name": "Common",
  "level_count": 14,
  "relative_level": 0,
  "tournament_level_index": 10,
  "mirror_relative_level": 0,
  "clone_relative_level": 0,
  "donate_capacity": 1,
  "sort_capacity": 1,
  "donate_reward": 5,
  "donate_xp": 1,
  "overflow_prestige": 1,
  "gold_conversion_value": 5,
  "max_level_donation_cost": 5,
  "trade_card_amount": 250,
  "chance_weight": 1000,
  "balance_multiplier": 100,
  "upgrade_exp": [4, 5, 6, 10, 25, 50, 100, 200, 400, 600, 800, 1600, 2000, 0],
  "upgrade_material_count": [2, 4, 10, 20, 50, 100, 200, 400, 800, 1000, 1500, 3000, 5000, 0],
  "original_upgrade_material_count": [2, 4, 10, 20, 50, 100, 200, 400, 800, 1000, 2000, 5000, 0, 0],
  "upgrade_cost": [5, 20, 50, 150, 400, 1000, 2000, 4000, 8000, 15000, 35000, 75000, 100000, 0],
  "power_level_multiplier": [110, 121, 133, 146, 160, 176, 193, 212, 233, 256, 281, 309, 339, 372, 409, 450, 495, 545, 600]
 },
 {
  "name": "Rare",
  "level_count": 12,
  "relative_level": 2,
  "tournament_level_index": 8,
  "mirror_relative_level": 2,
  "clone_relative_level": 2,
  "donate_capacity": 10,
  "sort_capacity": 7,
  "donate_reward": 50,
  "donate_xp": 10,
  "overflow_prestige": 10,
  "gold_conversion_value": 50,
  "max_level_donation_cost": 50,
  "trade_card_amount": 50,
  "chance_weight": 400,
  "balance_multiplier": 130,
  "upgrade_exp": [6, 10, 25, 50, 100, 200, 400, 600, 800, 1600, 2000, 0],
  "upgrade_material_count": [2, 4, 10, 20, 50, 100, 200, 400, 500, 750, 1250, 0],
  "original_upgrade_material_count": [2, 4, 10, 20, 50, 100, 200, 400, 800, 1000, 0, 0],
  "upgrade_cost": [50, 150, 400, 1000, 2000, 4000, 8000, 15000, 35000, 75000, 100000, 0],
  "power_level_multiplier": [110, 121, 133, 146, 160, 176, 193, 212, 233, 256, 281, 309, 340, 374, 411, 452, 497]
 },
 {
  "name": "Epic",
  "level_count": 9,
  "relative_level": 5,
  "tournament_level_index": 5,
  "mirror_relative_level": 5,
  "clone_relative_level": 5,
  "donate_capacity": 10,
  "sort_capacity": 80,
  "donate_reward": 500,
  "donate_xp": 10,
  "overflow_prestige": 100,
  "gold_conversion_value": 500,
  "max_level_donation_cost": 500,
  "trade_card_amount": 10,
  "chance_weight": 40,
  "balance_multiplier": 180,
  "upgrade_exp": [25, 100, 200, 400, 600, 800, 1600, 2000, 0],
  "upgrade_material_count": [2, 4, 10, 20, 40, 50, 100, 200, 0],
  "original_upgrade_material_count": [2, 4, 10, 20, 50, 100, 200, 0, 0],
  "upgrade_cost": [400, 2000, 4000, 8000, 15000, 35000, 75000, 100000, 0],
  "power_level_multiplier": [110, 121, 133, 146, 160, 176, 193, 212, 233, 256, 282, 310, 341, 375]
 }
]

full JSON: rarities.json

thanks for help.

CodePudding user response:

you can use:

df = df.drop(0) #delete first row. We will not use.
df['Name'] = df['Name'].ffill() #fillna in name column with first values until change
dfv = df.pivot_table(index='Name',aggfunc=list) #pivot table by name and put items to list
dfv = dfv.applymap(lambda x: [i for i in x if str(i) != 'nan']) #remove nans in lists
dfv = dfv.applymap(lambda x: x[0] if len(x)==1 else x) #if list lenght ==1, convert to string

dfv = dfv.applymap(lambda x: np.nan if x==[] else x) #convert empty lists to nan
dfv = dfv.reset_index()
final_json = dfv.to_dict('records')
  • Related