Is there any way to import a large CSV data file into Pycharm using Pandas Import? Because no matter what I do, the output seen in the run terminal is severely truncated which is not good for any selection or cleaning data operations.
Any suggestions would be appreciated.
CodePudding user response:
Pandas provides options for displaying DataFrame.
pd.options.display.width
pd.options.display.max_columns
pd.options.display.max_rows
By default, pandas will display a truncated table if the DataFrame has more rows/columns than max_rows
/max_columns
.
You can adjust this if you want. Here's some sample code.
>>> import pandas as pd
>>> from random import random
>>> df = pd.DataFrame({
... f'c{col_no}': [random() for _ in range(100)]
... for col_no in range(15)
... })
>>> pd.options.display.max_columns, pd.options.display.max_rows
(0, 60)
>>> df
c0 c1 c2 ... c12 c13 c14
0 0.871826 0.415696 0.962756 ... 0.036385 0.405643 0.807471
1 0.531463 0.516149 0.811182 ... 0.588035 0.015000 0.447855
2 0.703785 0.793341 0.019570 ... 0.374489 0.057472 0.590761
3 0.762984 0.171603 0.127855 ... 0.357097 0.013220 0.132322
4 0.991035 0.113433 0.840822 ... 0.113895 0.707505 0.457993
.. ... ... ... ... ... ... ...
95 0.438203 0.465847 0.287558 ... 0.236885 0.495121 0.115823
96 0.612054 0.709875 0.217789 ... 0.569730 0.779009 0.429083
97 0.396499 0.017465 0.075139 ... 0.032245 0.955732 0.708767
98 0.096672 0.227434 0.347087 ... 0.841708 0.031055 0.689640
99 0.123338 0.199680 0.284335 ... 0.328187 0.362656 0.379024
>>> pd.options.display.width = 200
>>> pd.options.display.max_columns = 15
>>> pd.options.display.max_rows = 100
>>> df
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
0 0.871826 0.415696 0.962756 0.337541 0.798125 0.641710 0.060606 0.268195 0.033646 0.713952 0.999305 0.266091 0.036385 0.405643 0.807471
1 0.531463 0.516149 0.811182 0.517024 0.907563 0.098621 0.486572 0.105661 0.233740 0.442899 0.882617 0.491250 0.588035 0.015000 0.447855
2 0.703785 0.793341 0.019570 0.656947 0.771691 0.163144 0.739283 0.775620 0.454568 0.739937 0.376440 0.783414 0.374489 0.057472 0.590761
3 0.762984 0.171603 0.127855 0.347233 0.681083 0.469366 0.074852 0.327360 0.583786 0.570660 0.918842 0.140252 0.357097 0.013220 0.132322
4 0.991035 0.113433 0.840822 0.198988 0.117649 0.148605 0.173794 0.126979 0.322275 0.766880 0.011601 0.918334 0.113895 0.707505 0.457993
5 0.027492 0.441665 0.015462 0.425986 0.876837 0.041831 0.385929 0.622585 0.893251 0.207410 0.126994 0.540103 0.132818 0.320651 0.135680
6 0.364498 0.777506 0.571290 0.463168 0.372986 0.727358 0.286281 0.060411 0.091997 0.599882 0.914836 0.713235 0.769993 0.912143 0.973625
7 0.021097 0.271388 0.903971 0.347351 0.255841 0.020190 0.307909 0.189683 0.635788 0.932846 0.740916 0.657532 0.347275 0.677888 0.027598
8 0.594859 0.905407 0.767936 0.929833 0.048191 0.084725 0.967413 0.183815 0.758094 0.686023 0.087515 0.512909 0.942502 0.858353 0.855532
9 0.899373 0.681138 0.546424 0.809373 0.174588 0.691135 0.755386 0.590502 0.161688 0.711284 0.918817 0.579863 0.599287 0.280585 0.691854
10 0.471923 0.523145 0.918165 0.406063 0.095486 0.972089 0.724117 0.231671 0.200418 0.733166 0.019452 0.128490 0.524909 0.895029 0.584772
... print all rows