I have a dataframe in which the weight of each client is not well kept resulting in:
CLIENT_ID | ENCOUNTER_DATE | WEIGHT_KG |
---|---|---|
16081 | 2018-12-17 | 70.0 |
16081 | 2019-03-19 | 0.0 |
16081 | 2019-04-18 | 0.0 |
16081 | 2019-06-07 | 0.0 |
20011 | 2020-02-27 | 0.0 |
20011 | 2020-03-27 | 0.0 |
20011 | 2020-04-27 | 57.0 |
20011 | 2020-06-07 | 0.0 |
20011 | 2020-07-07 | 60.0 |
20020 | 2020-01-01 | 0.0 |
The table is sorted by CLIENT_ID
and DATE_ENCOUNTER
.
How can I replace the values for each CLIENT_ID
where the WEIGHT_KG = 0.0
by first forward filling the entries, then back filling them? (Depending on the entries for each CLIENT_ID
This would result in a dataframe shown below:
CLIENT_ID | ENCOUNTER_DATE | WEIGHT_KG |
---|---|---|
16081 | 2018-12-17 | 70.0 |
16081 | 2019-03-19 | 70.0 |
16081 | 2019-04-18 | 70.0 |
16081 | 2019-06-07 | 70.0 |
20011 | 2020-02-27 | 57.0 |
20011 | 2020-03-27 | 57.0 |
20011 | 2020-04-27 | 57.0 |
20011 | 2020-06-07 | 57.0 |
20011 | 2020-07-07 | 60.0 |
20020 | 2020-01-01 | 0.0 |
Here is code to generate the df:
df = pd.DataFrame({"CLIENT_ID": [16081, 16081, 16081, 16081, 20011, 20011, 20011, 20011, 20011,20020],
"ENCOUNTER_DATE": ['2018-12-17', '2019-03-19', '2019-04-18', '2019-06-07', '2020-02-27', '2020-03-27', '2020-04-27', '2020-06-07', '2020-07-07','2020-01-01'],
"WEIGHT_KG": [70, 0, 0, 0, 0, 0, 57, 0, 60,0]})
CodePudding user response:
Idea is replace 0
to missing values and then per groups use forward
and backfilling
missing values, last replace NaN
to 0
:
df['WEIGHT_KG'] = (df['WEIGHT_KG'].replace(0, np.nan)
.groupby(df['CLIENT_ID'])
.transform(lambda x: x.ffill().bfill())
.fillna(0))
Or:
df['WEIGHT_KG'] = (df['WEIGHT_KG'].where(df['WEIGHT_KG'].ne(0))
.groupby(df['CLIENT_ID'])
.transform(lambda x: x.ffill().bfill())
.fillna(0))
print (df)
CLIENT_ID ENCOUNTER_DATE WEIGHT_KG
0 16081 2018-12-17 70.0
1 16081 2019-03-19 70.0
2 16081 2019-04-18 70.0
3 16081 2019-06-07 70.0
4 20011 2020-02-27 57.0
5 20011 2020-03-27 57.0
6 20011 2020-04-27 57.0
7 20011 2020-06-07 57.0
8 20011 2020-07-07 60.0
9 20020 2020-01-01 0.0