I have a dataframe after applying groupby
:
category | item
------------------
A | a_item1
| a_itme2
| a_item3
------------------
B | b_item1
| b_item2
------------------
On this, I want to add a new column with the calculation: 10 / (no of items per category)
.
For the example data, this would be:
category | item | value
----------------------------
A | a_item1| 3.33
| a_itme2| 3.33
| a_item3| 3.33
----------------------------
B | b_item1| 5
| b_item2| 5
-----------------------------
How can this be done?
CodePudding user response:
Use Series.value_counts
with Series.map
:
df['value'] = 10 / df['category'].map(df['category'].value_counts())
Or:
df['value'] = df['category'].map(df['category'].value_counts()).rdiv(10)
CodePudding user response:
You can use groupby
together with transform
:
df['value'] = 10 / df.groupby('category')['item'].transform('count')
CodePudding user response:
You can use the pandas apply function for dataframes.
Define the function that you want to apply on each row:
def get_value(s: pd.Series):
vc = df['category'].value_counts()
return 10/vc[s['category']]
Use apply on each row:
df['value'] = df.apply(get_value, axis=1)
df
# category item value
# 0 A a_item1 3.333333
# 1 A a_item2 3.333333
# 2 A a_item3 3.333333
# 3 B b_item1 5.000000
# 4 B b_item2 5.000000
You can also pre-compute the values counts and add them as arguments to your apply function.