Here is some code which increments several chronometers in parallel:
main.cpp
using namespace std;
#include <stdio.h>
#include <time.h>
#include <iostream>
#include <math.h>
#include <cstdlib>
#include <unistd.h>
#include <iostream>
#include <sstream>
#include <thread>
#include <vector>
#include <future>
#include "mychrono.hpp"
int main()
{
std::vector<Chronometer*> car_crono;
Chronometer chrono, output_chrono;
std::vector<std::thread> threads;
std::vector<std::future<Chronometer&>> futures;
std::thread th;
//future<Chronometer> ft;
for(int i = 0; i < 2; i )
{
car_crono.push_back(new Chronometer);
}
while (1) {
for(int i = 0; i<2; i )
{
//
// //threads.push_back(std::thread(&Chronometer::start_chrono, car_crono[i], std::ref(chrono)));
// auto ft = std::async(std::launch::async, &Chronometer::start_chrono, car_crono[i], std::ref(chrono));
//
// std::cout << "Hello-world" << std::endl;
futures.emplace_back(std::async(std::launch::async, &Chronometer::start_chrono, car_crono[i], std::ref(chrono)));
}
std::cout << "hello-world" << std::endl;
//auto ft = std::async(std::launch::async, &Chronometer::start_chrono, car_crono[0], std::ref(chrono));
//std::cout << "Hello-world-2" << std::endl;
for(auto&& f: futures){
std::cout << f.get() << '\n';
}
}
car_crono.clear();
}
mychrono.cpp
#include "mychrono.hpp"
#include <time.h>
#include <iostream>
#include <cstdlib>
#include <unistd.h>
#include <sstream>
#include <thread>
//int Chronometer::hour(0), min(0), sec(0);
Chronometer::Chronometer() : hour(0), min(0), sec(0)
{
}
Chronometer& Chronometer::start_chrono(Chronometer& chrono)
{
// if(chrono.hour == 0 && chrono.min == 0 && chrono.sec == 0)
// {
bool condition = true;
while(condition) {
sleep(1);
chrono.sec ;
if(chrono.sec > 59) {
chrono.min ;
chrono.sec = 0;
}
if(chrono.min > 59) {
chrono.hour ;
chrono.sec = 0;
chrono.min = 0;
}
// if(chrono.sec == 10)
// {
// condition = false;
// }
std::cout << "chrono: " << chrono << std::endl;
}
return chrono;
//}
}
Chronometer& Chronometer::finish_chrono(Chronometer& chrono)
{
chrono.hour = 0;
chrono.sec = 0;
chrono.min = 0;
return chrono;
}
std::ostream& operator<<(std::ostream& flux, Chronometer t)
{
flux << t.hour << ":" << t.min << ":" << t.sec;
return flux;
}
Chronometer& Chronometer::operator=(const Chronometer& other)
{
// Guard self assignment
//if (this == &other)
return *this;
}
Chronometer::~Chronometer(){}
mychrono.hpp
#include <time.h>
#include <iostream>
#include <sstream>
#ifndef mychrono_hpp
#define mychrono_hpp
class Chronometer
{
private:
int hour, min, sec;
//std::stringstream ss;
//Chronometer chrono;
public:
Chronometer();
Chronometer& start_chrono(Chronometer& chrono);
Chronometer& finish_chrono(Chronometer& chrono);
friend std::ostream& operator<<(std::ostream& flux, Chronometer t);
Chronometer& operator=(const Chronometer& other);
~Chronometer();
};
#endif
My program runs well my two chronometers in parallel each other but still dependant of my while loop. For example here I will print "hello-world" once but need to wait my threads stop to print a second "hello-world" message in my while loop.
My question is how to make my threads runs in parallel an be completely independant of others instructions in my while loop ?
CodePudding user response:
Tzig had a similar idea as mine, that is using condition variables and such. I've made a full working example including comments and hopefully written for readability.
#include <chrono>
#include <iostream>
#include <iomanip>
#include <mutex>
#include <future>
#include <condition_variable>
//-----------------------------------------------------------------------------------------------------
// state of the timer.
enum class State
{
idle,
starting,
running,
stopping,
stopped
};
//-----------------------------------------------------------------------------------------------------
// helper class for use of std::condition_variable, makes code more readable
// takes into account the pitfalls of condition variables :
// https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables
template<typename T>
class StateVariable
{
public:
StateVariable() = delete;
StateVariable(const StateVariable&) = delete;
StateVariable(StateVariable&&) = delete;
StateVariable& operator=(const StateVariable&) = delete;
explicit StateVariable(const T& value) :
m_value{ value }
{
}
void operator=(const T& value) noexcept
{
{
std::unique_lock<std::mutex> lock(m_value_mutex);
m_value = value;
}
m_value_changed.notify_all();
}
// atomic check and set
T set_if(const T& from_value, const T& to_value) noexcept
{
{
std::unique_lock<std::mutex> lock(m_value_mutex);
if (m_value != from_value) return from_value;
m_value = to_value;
}
m_value_changed.notify_all();
return to_value;
}
const bool try_wait_for(const T& value, const std::chrono::steady_clock::duration& duration) const noexcept
{
auto pred = [this, value] { return (m_value == value); };
std::unique_lock<std::mutex> lock(m_value_mutex);
if (pred()) return true;
return m_value_changed.wait_for(lock, duration, pred);
}
void wait_for(const T& value) const
{
try_wait_for(value, std::chrono::steady_clock::duration::max());
}
private:
// mutables so I could make the const promises on wait
// that they wont change the observable state (m_value)
// of this class.
mutable std::mutex m_value_mutex;
mutable std::condition_variable m_value_changed;
std::atomic<T> m_value;
};
//-----------------------------------------------------------------------------------------------------
// helper class for storing elapsed time, helps with readability later on
class ElapsedTime
{
public:
explicit ElapsedTime(const std::chrono::steady_clock::duration& duration) :
m_duration{ duration }
{
}
auto hours() const
{
return std::chrono::duration_cast<std::chrono::hours>(m_duration).count();
}
auto minutes() const
{
return (std::chrono::duration_cast<std::chrono::minutes>(m_duration).count() % 60);
}
auto seconds() const
{
return (std::chrono::duration_cast<std::chrono::seconds>(m_duration).count() % 60);
}
private:
std::chrono::steady_clock::duration m_duration;
};
//-----------------------------------------------------------------------------------------------------
// formatter for ElapsedTime
std::ostream& operator<<(std::ostream& os, const ElapsedTime& t)
{
os << std::setfill('0') << std::setw(2) << t.hours() << ':';
os << std::setfill('0') << std::setw(2) << t.minutes() << ':';
os << std::setfill('0') << std::setw(2) << t.seconds();
return os;
}
//-----------------------------------------------------------------------------------------------------
// ChronoMeter class
// note I use std::chrono classes
class ChronoMeter final
{
public:
ChronoMeter() :
m_state{ State::idle },
m_duration{ std::chrono::steady_clock::duration::min() }
{
};
ChronoMeter(const ChronoMeter&) = delete;
ChronoMeter(ChronoMeter&&) = delete;
ChronoMeter& operator=(const ChronoMeter&) = delete;
void Start()
{
m_start_time = std::chrono::steady_clock::now();
// exercise for the reader, also allow stopped Chronometers to be restarted.
// for now just this simple state model
if (m_state.set_if(State::idle, State::starting) != State::starting)
{
throw std::runtime_error("only an idle ChronoMeter can be started");
}
// it is okay to capture "this" because the destructor of the
// chronometer synchronizes with termination of this thread through the future
m_future = std::async(std::launch::async, [this]
{
// Set indication that the thread has really started.
// this is important because when std::async returns, this thread exists
// but may not have been scheduled yet.
m_state = State::running;
do
{
// assigning a value to m_duration isn't atomic so protect it.
// we might be reading the value on another thread which might
// result in reading an intermediate state.
std::scoped_lock<std::mutex> lock{ m_data_mtx };
m_duration = std::chrono::steady_clock::now() - m_start_time;
// using a statevariable to check for stopping means it can respond
// during the one second delay and stop immediately.
// this is an advantage over using sleep
} while (!m_state.try_wait_for(State::stopping, std::chrono::seconds(1)));
m_state = State::stopped;
});
// Wait for the thread to have really started
// this way we have a clear post condition for start
m_state.wait_for(State::running);
}
void Stop()
{
// only allow a running Chronometer to be stopped.
// in all other states Stop does nothing
if (m_state.set_if(State::running, State::stopping) == State::stopping)
{
// synchronization with stopped state, as set by other thread
m_state.wait_for(State::stopped);
// future get is not really needed for synchronization.
// but if thread threw an exception it's rethrown here
m_future.get();
}
}
~ChronoMeter()
{
// Automatically stop thread if this hasn't already happened.
Stop();
}
const ElapsedTime Elapsed() const
{
std::scoped_lock<std::mutex> lock{ m_data_mtx };
return ElapsedTime{ m_duration };
}
private:
std::future<void> m_future;
StateVariable<State> m_state;
mutable std::mutex m_data_mtx;
std::chrono::steady_clock::time_point m_start_time;
std::chrono::steady_clock::duration m_duration;
};
int main()
{
ChronoMeter meter1;
ChronoMeter meter2;
meter1.Start();
std::this_thread::sleep_for(std::chrono::seconds(5));
auto elapsed_1_1 = meter1.Elapsed();
std::cout << "Meter 1 elapsed time " << elapsed_1_1 << std::endl;
meter2.Start();
std::this_thread::sleep_for(std::chrono::seconds(4));
auto elapsed_1_2 = meter1.Elapsed();
auto elapsed_2 = meter2.Elapsed();
std::cout << "Meter 1 elapsed time " << elapsed_1_2 << std::endl;
std::cout << "Meter 2 elapsed time " << elapsed_2 << std::endl;
meter1.Stop();
// not stopping meter2 (and it's thread) explicitly, this is done safely by destructor if needed
return 0;
}
CodePudding user response:
I usually solve this problem by making the multithreaded object handle everything that has to do with multithreading, here's how I solved it in your case (I ended up rewriting a lot of things so maybe the behavior isn't exactly the one you want, you can use my code as a starting point):
main.cpp:
#include <iostream>
#include <vector>
#include "mychrono.hpp"
int main()
{
std::vector<Chronometer*> car_crono;
for(int i = 0; i < 2; i )
{
car_crono.push_back(new Chronometer);
}
while (1) {
// std::cout << "hello-world" << std::endl;
Chronometer::Time t = car_crono[0]->get_time();
if(t.sec >= 10)
car_crono[0]->reset_chrono();
std::cout << "Seconds of T0: " << t.sec << std::endl;
std::cout << "T1: " << car_crono[1]->to_string() << std::endl;
}
car_crono.clear();
}
mychrono.hpp:
#ifndef mychrono_hpp
#define mychrono_hpp
#include <iostream>
#include <thread>
#include <memory>
#include <condition_variable>
#include <mutex>
#include <atomic>
class Chronometer
{
public:
struct Time {
int hour;
int min;
int sec;
};
Chronometer();
void reset_chrono();
friend std::ostream& operator<<(std::ostream& flux, Chronometer& t);
Chronometer& operator=(const Chronometer& other);
std::string to_string();
Time get_time();
~Chronometer();
private:
Time currentTime;
std::mutex timeMutex;
std::condition_variable conditionVariable;
std::unique_ptr<std::thread> thread;
std::mutex CVMutex;
std::atomic<bool> exitNow;
void thread_function();
};
#endif
mychrono.cpp:
#include "mychrono.hpp"
Chronometer::Chronometer() : currentTime.hour(0), currentTime.min(0), currentTime.sec(0)
{
thread.reset(new std::thread(&Chronometer::thread_function, this));
}
void Chronometer::reset_chrono()
{
std::lock_guard<std::mutex> lock(timeMutex);
currentTime.hour = 0;
currentTime.sec = 0;
currentTime.min = 0;
}
std::ostream& operator<<(std::ostream& flux, Chronometer& t)
{
flux << t.to_string();
return flux;
}
Chronometer& Chronometer::operator=(const Chronometer& other)
{
// Guard self assignment
//if (this == &other)
return *this;
}
std::string Chronometer::to_string()
{
std::lock_guard<std::mutex> lock(timeMutex);
return std::to_string(currentTime.hour) ":" std::to_string(currentTime.min) ":" std::to_string(currentTime.sec);
}
Time Chronometer::get_time()
{
return currentTime;
}
Chronometer::~Chronometer()
{
exitNow = true;
{
std::unique_lock<std::mutex> lock(CVMutex);
lock.unlock();
conditionVariable.notify_all();
}
thread->join();
}
void Chronometer::thread_function()
{
std::unique_lock<std::mutex> waitLock(CVMutex);
while(!exitNow)
{
sec ;
if(currentTime.sec > 59) {
std::lock_guard<std::mutex> lock(timeMutex);
currentTime.min ;
currentTime.sec = 0;
}
if(currentTime.min > 59) {
std::lock_guard<std::mutex> lock(timeMutex);
currentTime.hour ;
currentTime.sec = 0;
currentTime.min = 0;
}
// std::cout << "chrono: " << *this << std::endl; //Not thread safe be careful
conditionVariable.wait_for(waitLock, std::chrono::seconds(1));
}
}
EDIT: About your latest comment: you don't need to reset a chrono in its destructor as the data will be destroyed anyway. If you want to reset the counter while it's running you want to call Chronometer::reset_chrono() from you main function.
For the second part of your comment, I added a get_time function to the code (I also added a mutex to avoid data races, I completly forgot when I wrote the original answer). When you want to get the current time of a chrono from the main function you just call get_time() and use the struct it returns to get the info you want.
I added a small example to show how to use both functions. As you can see, the main function doesn't even need to know what threads are !
I may be wrong but from the questions you ask I feel maybe you're not used to how multithreading works. It's a very difficult concept and one of the few I feel you can't learn only through experience, if that's the case you might want to learn about it from dedicated sites such as this one. I think I pieced together that you speak french, here's a really good article (that was never finished apparently) about the theory of it and another one in french, more about the specifics of C . If you understand the core concepts and just have a hard time with my code, I plan on commenting it all but for now Pepijn Kramer did a great job explaining what they did in their response.