I am trying to filter multiple columns (15) of a dataframe. specifically I want to remove the outliers using Q3 IQR1.5 and Q1 - IQR1.5 method.
Toy example:
library(tidyverse)
aa <- c(2,3,4,3,2,2,1,6,5,4,3,1,15)
bb <- c(0.2,20,30,40,30,20,20,10,30,40,30,10,10)
cc <- c(-9,2,3,4,3,2,2,1,5,4,3,1,25)
df <- tibble(aa,bb,cc)
I tried without success:
i <- NULL
for(i in 1:ncol(fat)){
po <- fat %>%
filter(.[[i]] >= (quantile(.[[i]], .25) - IQR(.[[i]]) * 1.5))
po <- fat %>%
filter(.[[i]] <= (quantile(.[[i]], .75) IQR(.[[i]]) * 1.5))
}
Can I use filter and map functions to do this? and how?
Many thanks GS
CodePudding user response:
We may use filter
with if_all/across
library(dplyr)
df %>%
filter(if_all(where(is.numeric), ~ (.>= (quantile(., .25) - IQR(.) * 1.5 )) &
(.<= (quantile(., .75) IQR(.) * 1.5 ))))
CodePudding user response:
Here are couple of base R option using sapply
/lapply
. We write a custom function to detect outliers and apply it to every column and select only the rows that have no outlier in them.
is_outlier <- function(x) {
x <= (quantile(x, .25) - IQR(x) * 1.5) | x >= (quantile(x, .75) IQR(x) * 1.5)
}
df[!Reduce(`|`, lapply(df, is_outlier)), ]
# aa bb cc
# <dbl> <dbl> <dbl>
# 1 3 20 2
# 2 4 30 3
# 3 3 40 4
# 4 2 30 3
# 5 2 20 2
# 6 1 20 2
# 7 6 10 1
# 8 5 30 5
# 9 4 40 4
#10 3 30 3
#11 1 10 1
Using sapply
-
df[rowSums(sapply(df, is_outlier)) == 0, ]