I have a Order collection with records looking like this:
{
"_id": ObjectId,
"status": String Enum,
"products": [{
"sku": String UUID,
...
}, ...],
...
},
My goal is to find find what products user buy together. Given an sku, i would like to browse the past order and find, for orders that contains more than 1 product AND of course the product with the looked up sku, what other products were bought along.
So I created a aggregation pipeline that works :
[
// exclude cancelled orders
{
'$match': {
'status': {
'$nin': [
'CANCELLED', 'CHECK_OUT'
]
}
}
},
// add a fields with product size and just the products sku
{
'$addFields': {
'size': {
'$size': '$products'
},
'skus': '$products.sku'
}
},
// limit to orders with 2 products or more including the looked up SKU
{
'$match': {
'size': {
'$gte': 2
},
'skus': {
'$elemMatch': {
'$eq': '3516215049767'
}
}
}
},
// group by skus
{
'$unwind': {
'path': '$skus'
}
}, {
'$group': {
'_id': '$skus',
'count': {
'$sum': 1
}
}
},
// sort by count, exclude the looked up sku, limit to 4 results
{
$sort': {
'count': -1
}
}, {
'$match': {
'_id': {
'$ne': '3516215049767'
}
}
}, {
'$limit': 4
}
]
Althought this works, this collection contains more than 10K docs and I have an alert on my MongoDB instance telling me than the ratio Scanned Objects / Returned has gone above 1000.
So my question is, how can my query be improve? and what indexes can I add to improve this?
db.Orders.stats();
{
size: 14329835,
count: 10571,
avgObjSize: 1355,
storageSize: 4952064,
freeStorageSize: 307200,
capped: false
nindexes: 2,
indexBuilds: [],
totalIndexSize: 466944,
totalSize: 5419008,
indexSizes: { _id_: 299008, status_1__created_at_1: 167936 },
scaleFactor: 1,
ok: 1,
operationTime: Timestamp({ t: 1635415716, i: 1 })
}
CodePudding user response:
Let's start with rewriting the query a little bit to make it more efficient. Currently you're matching all the orders with a certain status and after that you're starting with data manipulations, this means every single stage is doing work on a larger than needed data set.
What we can do is move all the queries into the first stage, this is made possible using Mongo's dot notation, like so:
{
'$match': {
'status': {
'$nin': [
'CANCELLED', 'CHECK_OUT',
],
},
'products.sku': '3516215049767', // mongo allows you to do this using the dot notation.
'products.1': { $exists: true }, // this requires the array to have at least two elements.
},
},
Now this achieves two things:
- We start the pipeline only with relevant results, no need to calculate the
$size
of the array anymore to many unrelevant documents. This already will boost your performance greatly. - Now we can create a compound index that will support this specific query, before we couldn't do that as index usage is limited to the first step and that only included the
status
field. ( just as an anecdote is that Mongo actually does optimize pipelines, but in this specific case no optimization was possible to to the usage of$addFields
)
The index that I recommend building is:
{ status: 1, "products.sku": 1 }
This will allow the best match to start off your pipeline.