I am trying to do some data augmentation but i am not so familiar with tensors. This is the code i started with:
def _random_apply(func, x, p):
return tf.cond(tf.less(tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32),
tf.cast(p, tf.float32)),
lambda: func(x),
lambda: x)
def _resize_with_pad(image):
image = tf.image.resize_with_pad(image, target_height=IMG_S, target_width=IMG_S)
return image
def augment(image, label):
img = _random_apply(tf.image.flip_left_right(image), image, p=0.2)
img = _random_apply(_resize_with_pad(img), img, p=1)
return img, label
train_dataset = (
train_ds
.shuffle(1000)
.map(augment, num_parallel_calls=tf.data.AUTOTUNE)
.prefetch(tf.data.AUTOTUNE)
)
which resulted in the following error.
----> 4 .map(augment, num_parallel_calls=tf.data.AUTOTUNE)
TypeError: 'Tensor' object is not callable
Then i thought maybe it would work if i converted it to numpy.
def _random_apply(func, x, p):
return tf.cond(tf.less(tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32),
tf.cast(p, tf.float32)),
lambda: func(x),
lambda: x)
def _resize_with_pad(image):
image = image.numpy()
image = tf.image.resize_with_pad(image, target_height=IMG_S, target_width=IMG_S).numpy()
return image
def augment(image, label):
image = image.numpy()
img = _random_apply(tf.image.flip_left_right(image).numpy(), image, p=0.2)
img = _random_apply(_resize_with_pad(img), img, p=1)
return img, label
train_dataset = (
train_ds
.shuffle(1000)
.map(augment, num_parallel_calls=tf.data.AUTOTUNE)
.prefetch(tf.data.AUTOTUNE)
)
But now i get this error.
----> 4 .map(augment, num_parallel_calls=tf.data.AUTOTUNE)
AttributeError: 'Tensor' object has no attribute 'numpy'
I tried to do something like in this answer and now i get no error directly but rather in the next block of code:
for image, _ in train_dataset.take(9):
etc
InvalidArgumentError
----> 1 for image, _ in train_dataset.take(9):
InvalidArgumentError: TypeError: 'tensorflow.python.framework.ops.EagerTensor' object is not callable
Anyone know what I am doing wrong?
CodePudding user response:
In augment
, you're passing tensors to _random_apply
. tf.image.flip_left_right(image)
returns a tensor. Then, in _random_apply
, you're using that tensor like it's a function. You need to pass tf.flip_left_right
as a callable:
def augment(image):
img = _random_apply(tf.image.flip_left_right, image, p=0.2)
img = _random_apply(_resize_with_pad, img, p=1)
return img
Full working example:
import tensorflow as tf
train_ds = tf.data.Dataset.from_tensor_slices(tf.random.uniform((100, 224, 224, 3)))
def _random_apply(func, x, p):
return tf.cond(tf.less(tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32),
tf.cast(p, tf.float32)),
lambda: func(x),
lambda: x)
def _resize_with_pad(image):
image = tf.image.resize_with_pad(image, target_height=200, target_width=200)
return image
def augment(image):
img = _random_apply(tf.image.flip_left_right, image, p=0.2)
img = _random_apply(_resize_with_pad, img, p=1)
return img
train_dataset = train_ds.map(augment)
batch = next(iter(train_dataset))