I would like to merge two dataframe into one, each cell becoming a vector or a list. Columns have the same name in both dataframes. Some columns are made of numerical values that I want to keep as numerical values in the merged dataframe. Some columns are made of characters.
For example I would like from these two dataframes:
DF1 <- data.frame(
xx = c(1:5),
yy = c(2:6),
zz = c("a","b","c","d","e"))
DF2 <- data.frame(
xx = c(3:7),
yy = c(5:9),
zz = c("a","i","h","g","f"))
Which look like this:
DF1
xx | yy | zz |
---|---|---|
1 | 2 | a |
2 | 3 | b |
3 | 4 | c |
4 | 5 | d |
5 | 6 | e |
DF2
xx | yy | zz |
---|---|---|
3 | 5 | a |
4 | 6 | i |
5 | 7 | h |
6 | 8 | g |
7 | 9 | f |
To get a dataframe looking like this:
xx | yy | zz |
---|---|---|
c(1,3) | c(2,5) | c(a,a) |
c(2,4) | c(3,6) | c(b,i) |
c(3,5) | c(4,7) | c(c,h) |
c(4,6) | c(5,8) | c(d,g) |
c(5,7) | c(6,9) | c(e,f) |
I have tried with paste() or str_c() but it always transforms my numerical values into char and it does not create a list or a vector like I want.
Do you know of any functions that coule help me do that?
CodePudding user response:
As your data consists of different types, There is no straight forward answer. However I produced some solution, that might do the trick by creating a nested list. Let me know, if this is what you need:
library(BBmisc)
library(dplyr)
colvec <- c("xx2","yy2","zz2")
colnames(DF2) <- colvec
DF <- bind_cols(DF1,DF2)
cols.num <- c("xx","xx2","yy","yy2")
DF[cols.num] <- sapply(DF[cols.num],as.character)
DF <- DF[,c(1,4,2,5,3,6)]
xx <- convertRowsToList(DF[,1:2])
yy <- convertRowsToList(DF[,3:4])
zz <- convertRowsToList(DF[,5:6])
final_list <- list(xx,yy,zz)
CodePudding user response:
Try the following base R option
> data.frame(Map(function(x, y) asplit(cbind(x, y), 1), DF1, DF2))
xx yy zz
1 1, 3 2, 5 a, a
2 2, 4 3, 6 b, i
3 3, 5 4, 7 c, h
4 4, 6 5, 8 d, g
5 5, 7 6, 9 e, f
CodePudding user response:
Using some tidyverse, you can invert the lists and then build it all back together.
library(purrr)
library(dplyr)
as_tibble(map2(DF1, DF2, ~ map(transpose(list(.x, .y)), unlist)))
This gets you your data frame of vectors.
# A tibble: 5 x 3
xx yy zz
<list> <list> <list>
1 <int [2]> <int [2]> <chr [2]>
2 <int [2]> <int [2]> <chr [2]>
3 <int [2]> <int [2]> <chr [2]>
4 <int [2]> <int [2]> <chr [2]>
5 <int [2]> <int [2]> <chr [2]>
Breaking this down...
transpose(list(.x, .y))
will flip a paired list of columns inside-out from a list of two vectors to a list of 5 elements (one for each row, each with two list elements in it).map(transpose(list(.x, .y)), unlist))
will iterate over each of the 5 lists and unlist them back from a list of 2 to a vector of 2.map2(DF1, DF2, ~ map(transpose(list(.x, .y)), unlist))
will iterate over each column pair from DF1 and DF2 (e.g., xx, yy, zz) doing steps 1 and 2.as_tibble(map2(DF1, DF2, ~ map(transpose(list(.x, .y)), unlist)))
converts the list to a tibble (basically a data.frame).
Another thing you can do is stack the data and then nest()
it. You again need a few steps to do it. This would scale better because you could do this with more than 2 data frames.
library(dplyr)
library(tibble)
library(tidyr)
bind_rows(rowid_to_column(DF1),
rowid_to_column(DF2)) %>%
group_by(rowid) %>%
nest(nest_data = -rowid) %>%
unnest_wider(nest_data) %>%
ungroup() %>%
select(-rowid)
This also gets you your data frame of vectors.
# A tibble: 5 x 3
xx yy zz
<list> <list> <list>
1 <int [2]> <int [2]> <chr [2]>
2 <int [2]> <int [2]> <chr [2]>
3 <int [2]> <int [2]> <chr [2]>
4 <int [2]> <int [2]> <chr [2]>
5 <int [2]> <int [2]> <chr [2]>
CodePudding user response:
This gives you matrices in a list:
res <- setNames(
lapply( colnames(DF1), function(x) cbind(DF1[[x]], DF2[[x]]) ),
colnames(DF1) )
To convert the result into a data frame you can use this:
data.frame( sapply(
names(res), function(x){ sapply(
1:nrow(res$xx), function(y){ list(res[[x]][y,1:2]) }
) }
) )
xx yy zz
1 1, 3 2, 5 a, a
2 2, 4 3, 6 b, i
3 3, 5 4, 7 c, h
4 4, 6 5, 8 d, g
5 5, 7 6, 9 e, f
Put together in a function:
morph <- function(a, b){
res <- setNames(
lapply( colnames(a), function(x) cbind(a[[x]], b[[x]]) ),
colnames(a) )
data.frame( sapply(
names(res), function(x){ sapply(
1:nrow(res$xx), function(y){ list(res[[x]][y,1:2]) }
) }
) )
}
morph(DF1,DF2)
xx yy zz
1 1, 3 2, 5 a, a
2 2, 4 3, 6 b, i
3 3, 5 4, 7 c, h
4 4, 6 5, 8 d, g
5 5, 7 6, 9 e, f