How to calculate the mean for every n vectors from a df creating a new data frame with the results.
I expect to get: column 1: mean (V1,V2), column 2: mean (V3,V4), column 3: mean (V5,V6) ,and so forth
data
df <- data.frame(v1=1:6,V2=7:12,V3=13:18,v4=19:24,v5=25:30,v6=31:36)
CodePudding user response:
You may try,
dummy <- data.frame(
v1 = c(1:10),
v2 = c(1:10),
v3 = c(1:10),
v4 = c(1:10),
v5 = c(1:10),
v6 = c(1:10)
)
nvec_mean <- function(df, n){
res <- c()
m <- matrix(1:ncol(df), ncol = n, byrow = T)
if (ncol(df) %% n != 0){
stop()
}
for (i in 1:nrow(m)){
v <- rowMeans(df[,m[i,]])
res <- cbind(res, v)
}
colnames(res) <- c(1:nrow(m))
res
}
nvec_mean(dummy,3)
1 2
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 4
[5,] 5 5
[6,] 6 6
[7,] 7 7
[8,] 8 8
[9,] 9 9
[10,] 10 10
If you didn't want rowMeans
or result is not what you wanted, please let me know.
Simple(?) version
df <- data.frame(v1=1:6,V2=7:12,V3=13:18,v4=19:24,v5=25:30,v6=31:36)
n = 2
res <- c()
m <- matrix(1:ncol(df), ncol = 2, byrow = T)
for (i in 1:nrow(m)){
v <- rowMeans(df[,m[i,]])
res <- cbind(res, v)
}
res
v v v
[1,] 4 16 28
[2,] 5 17 29
[3,] 6 18 30
[4,] 7 19 31
[5,] 8 20 32
[6,] 9 21 33
CodePudding user response:
Here is base R option
n <- 2 # Mean across every n = 2 columns
do.call(cbind, lapply(seq(1, ncol(df), by = n), function(idx) rowMeans(df[c(idx, idx 1)])))
# [,1] [,2] [,3]
#[1,] 4 16 28
#[2,] 5 17 29
#[3,] 6 18 30
#[4,] 7 19 31
#[5,] 8 20 32
#[6,] 9 21 33
This returns a matrix
rather than a data.frame
(which makes more sense here since you're dealing with "all-numeric" data).
Explanation: The idea is a non-overlapping sliding window approach. seq(1, ncol(df), by = n)
creates the start indices of the columns (here: 1, 3, 5). We then loop over those indices idx
and calculate the row means of df[c(idx, idx 1)]
. This returns a list
which we then cbind
into a matrix
.
As a minor modifcation, you can also predefine a data.frame
with the right dimensions and then skip the do.call(cbind, ...)
step by having R do an implicit list
to data.frame
typecast.
out <- data.frame(matrix(NA, ncol = ncol(df) / 2, nrow = nrow(df)))
out[] <- lapply(seq(1, ncol(df), by = n), function(idx) rowMeans(df[c(idx, idx 1)]))
# X1 X2 X3
#1 4 16 28
#2 5 17 29
#3 6 18 30
#4 7 19 31
#5 8 20 32
#6 9 21 33