I'm trying to use the optimization module in SciPy, just writing short trial programs. I can get solutions when there are linear constraints, but the Hessian definition just doesnt work. I've used the example on this site but I get an error when try not to use the built-in Rosenberg function and its hessian.
Also tried with a simple problem found online, my code being:
import numpy as np
from scipy import optimize
from scipy.optimize import NonlinearConstraint
def fun(x):
return x[0]**2 x[1]**2-8*x[1] 16
bounds = optimize.Bounds([0,0,0],[np.inf,np.inf,np.inf])
def cons_f(x):
return x[0]**2 x[1]**2 x[2]
def cons_J(x):
return [2*x[0],2*x[1],1]
def cons_H(x,v):
return v[0]*[2,2,0]
nonlinear_constraint = optimize.NonlinearConstraint(cons_f, -np.inf, 6, jac=cons_J, hess=cons_H)
x0=[1,1]
res = optimize.minimize(fun, x0, method='trust-constr', jac=cons_J, hess=cons_H,
constraints=[nonlinear_constraint],
options={'verbose': 1}, bounds=bounds)
print(res.x)
I get the following error for both cases:
Traceback (most recent call last):
File "C:\Users\user\OneDrive - EOP\Escritorio\Test.py", line 19, in <module>
res = optimize.minimize(fun, x0, method='trust-constr', jac=cons_J, hess=cons_H,
File "C:\Users\user\AppData\Local\Programs\Python\Python39\lib\site-packages\scipy\optimize\_minimize.py", line 634, in minimize
return _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
File "C:\Users\user\AppData\Local\Programs\Python\Python39\lib\site-packages\scipy\optimize\_trustregion_constr\minimize_trustregion_constr.py", line 332, in _minimize_trustregion_constr
objective = ScalarFunction(fun, x0, args, grad, hess,
File "C:\Users\user\AppData\Local\Programs\Python\Python39\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 163, in __init__
self.H = hess(np.copy(x0), *args)
TypeError: cons_H() missing 1 required positional argument: 'v'
CodePudding user response:
There are a several things going wrong here:
- By setting
jac=cons_J
andhess=cons_H
you are using the derivatives of the constraint function as objective derivatives, which probably is not what you want to do. - The constraint hessian
cons_H
is wrong. - Your constraint function is a function of three variables but your initial guess
x0
letsminimize
think you have an optimization problem of two variables.
After fixing all problems, your code could look like this:
import numpy as np
from scipy.optimize import Bounds, minimize, NonlinearConstraint
# objective and derivatives
def fun(x):
return x[0]**2 x[1]**2-8*x[1] 16
def grad(x):
return np.array([2*x[0], 2*x[1]-8, 0])
def hess(x):
return np.array([[2, 0, 0], [0, 2, 0], [0, 0, 0]])
# constraint function and derivatives
def cons_f(x): return x[0]**2 x[1]**2 x[2]
def cons_J(x): return [2*x[0],2*x[1],1]
def cons_H(x,v): return v[0]*np.array([[2, 0, 0], [0, 2, 0], [0, 0, 0]])
# variable bounds
bounds = Bounds([0,0,0],[np.inf,np.inf,np.inf])
# constraint
con = NonlinearConstraint(cons_f, -np.inf, 6, jac=cons_J, hess=cons_H)
# initial guess
x0=[1,1,1]
res = minimize(fun, x0, method='trust-constr', jac=grad, hess=hess,
constraints=[con], bounds=bounds)