I am trying to train a GAN model with the MNIST dataset. I think I have most of the pieces in place but I am getting this error:
ValueError: Layer Discriminator expects 1 input(s), but it received 2 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(64, 28, 28) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(64, 28, 28) dtype=float32>]
This comes from my train function when I call:
loss_dis = self.discriminator.train_on_batch(X_train_dis, y_train_dis)
Here you can see my full train function:
def train(self, X_train, batch_size=128, epochs=2000, save_interval=200):
half_batch = batch_size//2
y_pos_train_dis = np.ones((half_batch, 1))
y_neg_train_dis = np.zeros((half_batch, 1))
y_train_GAN = np.ones((batch_size, 1))
for epoch in range(epochs):
# Generate training data for Discriminator
# random half_batch amount of real images
X_pos_train_dis = X_train[np.random.randint(0, X_train.shape[0], half_batch)]
# random half_batch amount of generated fake images
X_neg_train_dis = self.generator.predict(np.random.normal(0, 1, (half_batch, self.input_size[0])))
# Shuffle and append data using sklearn shuffle function
X_train_dis, y_train_dis = shuffle(X_neg_train_dis, X_pos_train_dis), shuffle(y_neg_train_dis, y_pos_train_dis)
# Generate training data for combined GAN model
X_train_GAN = np.random.normal(0, 1, (batch_size, self.input_size[0]))
# Train Discriminator
loss_dis = self.discriminator.train_on_batch(X_train_dis, y_train_dis)
# Train Generator
loss_gen = self.GAN.train_on_batch(X_train_GAN, y_train_GAN)
and my initial model declaration:
def __init__(self, input_shape=(28,28,1), rand_vector_shape=(100,), lr=0.0002, beta=0.5):
# Input sizes
self.img_shape = input_shape
self.input_size = rand_vector_shape
# optimizer
self.opt = tf.keras.optimizers.Adam(lr, beta)
# Create Generator model
self.generator = self.generator_model()
self.generator.compile(loss='binary_crossentropy', optimizer = self.opt, metrics = ['accuracy'])
# print(self.generator.summary())
# Create Discriminator model
self.discriminator = self.discriminator_model()
self.discriminator.compile(loss='binary_crossentropy', optimizer = self.opt, metrics = ['accuracy'])
# print(self.discriminator.summary())
# Set the Discriminator as non trainable in the combined GAN model
self.discriminator.trainable = False
# Define model input and output
input = tf.keras.Input(self.input_size)
generated_img = self.generator(input)
output = self.discriminator(generated_img)
# Define and compile combined GAN model
self.GAN = tf.keras.Model(input, output, name="GAN")
self.GAN.compile(loss='binary_crossentropy', optimizer = self.opt, metrics=['accuracy'])
return None
def discriminator_model(self):
"""Create discriminator model."""
model = tf.keras.models.Sequential(name='Discriminator')
model.add(layers.Flatten())
model.add(layers.Dense(units=512, kernel_initializer='normal', activation='relu'))
model.add(layers.Dense(units=256, kernel_initializer='normal', activation='relu'))
model.add(layers.Dense(units=1, kernel_initializer='normal', activation='sigmoid'))
return model
def generator_model(self):
"""Create generator model."""
model = tf.keras.models.Sequential(name='Generator')
model.add(layers.Dense(units=256, kernel_initializer='normal', activation='relu'))
model.add(layers.Dense(units=512, kernel_initializer='normal', activation='relu'))
model.add(layers.Dense(units=1024, kernel_initializer='normal', activation='relu'))
model.add(layers.Dense(units=np.prod(self.img_shape), kernel_initializer='normal', activation='relu'))
model.add(layers.Reshape((28,28)))
return model
I can post the full code if that would be helpful but I imagine this is a very small mistake somewhere. I looked around online and it seems sometimes this is related to using []
instead of ()
but that does not seem to be the case in my code (at least from what I can see).
CodePudding user response:
I can imagine that the problem is coming directly from your shuffle
function:
Try concatenating your pairs of data and then using tf.random.shuffle(tensor)
like:
X_train_dis, y_train_dis = tf.random.shuffle(tf.concat([X_neg_train_dis, X_pos_train_dis], axis=0)), tf.random.shuffle(tf.concat([y_neg_train_dis, y_pos_train_dis], axis=0))
CodePudding user response:
It looks like the issue was that Shuffle
was returning two lists rather than a concatenated one so I switched the syntax to:
X_train_dis, y_train_dis = tf.concat(shuffle(X_neg_train_dis, X_pos_train_dis, random_state=0), axis=0), tf.concat(shuffle(y_neg_train_dis, y_pos_train_dis, random_state=0), axis=0)
Note, this is using the Sklearn shuffle
function.