Why am I getting the following error and how can I solve it?
CodePudding user response:
You just have to add a second dimension to your data. It has to be (batch_size, features). You could use np.expand_dims
to change your inputs from (batch_size,) to (batch_size, features):
import tensorflow as tf
import numpy as np
tf.random.set_seed(42)
# Create some regression data
X_regression = np.expand_dims(np.arange(0, 1000, 5), axis=1)
y_regression = np.expand_dims(np.arange(100, 1100, 5), axis=1)
# Split it into training and test sets
X_reg_train = X_regression[:150]
X_reg_test = X_regression[150:]
y_reg_train = y_regression[:150]
y_reg_test = y_regression[150:]
tf.random.set_seed(42)
# Recreate the model
model_3 = tf.keras.Sequential([
tf.keras.layers.Dense(100),
tf.keras.layers.Dense(10),
tf.keras.layers.Dense(1)
])
# Change the loss and metrics of our compiled model
model_3.compile(loss=tf.keras.losses.mae, # change the loss function to be regression-specific
optimizer=tf.keras.optimizers.Adam(),
metrics=['mae']) # change the metric to be regression-specific
# Fit the recompiled model
model_3.fit(X_reg_train, y_reg_train, epochs=100)