I'm relatively new to Pandas. I have a DataFrame in the form:
A B C D E
0 1 1.1 a 23.7853 18.2647
1 1 1.2 a 23.7118 17.2387
2 1 1.1 b 24.1873 17.3874
3 1 1.2 b 23.1873 18.1748
4 2 1.1 a 24.1872 18.1847
... ... ... ... ... ...
I would like to pivot it to have a three-level MultiIndex constructed from the values in columns A and B and the column headers ["D", "E"]. I also want to use the values from B as the new column headers and the data in columns D and E for the values. All values are one-to-one (with some NaNs). If I understand correctly, I need to use pivot_table() instead of just pivot() because of the MultiIndex. Ultimately I want a table that looks like:
B 1.1 1.2 ...
A C col-name
1 a D 23.7853 23.7118 ...
E 18.2647 17.2387 ...
b D 24.1873 23.1873 ...
E 17.3874 18.1748 ...
2 a D 24.1872 23.1987 ...
E 18.1847 19.2387 ...
... ... ... ... ... ...
I'm pretty sure the answer is to use some command like
pd.pivot_table(df, columns=["B"], values=["D","E"], index=["A","C","???"])
I'm unsure what to put in the "values" and "index" arguments to get the right behavior.
If I can't do this with a single pivot_table command, do I need to construct my Multi-Index ahead of time? Then what?
Thanks!
CodePudding user response:
Create a multiindex with columns A, C, B
then use stack
unstack
to reshape the dataframe
df.set_index(['A', 'C', 'B']).stack().unstack(-2)
B 1.1 1.2
A C
1 a D 23.7853 23.7118
E 18.2647 17.2387
b D 24.1873 23.1873
E 17.3874 18.1748
2 a D 24.1872 NaN
E 18.1847 NaN
CodePudding user response:
You can use pd.pivot_table()
together with .stack()
, as follows:
(pd.pivot_table(df, index=['A', 'C'], columns='B', values=["D","E"])
.rename_axis(columns=['col_name', 'B']) # set axis name for ["D","E"]
.stack(level=0)
)
Result:
B 1.1 1.2
A C col_name
1 a D 23.7853 23.7118
E 18.2647 17.2387
b D 24.1873 23.1873
E 17.3874 18.1748
2 a D 24.1872 NaN
E 18.1847 NaN