I have a data frame with columns, say v1~v4
| _NAME | _TIMESTAMP | v0 | v1 | v2 | v3 | v4 |
|----------|---------------------|-------|------|-------|-------|-------|
| BRAKE_LH | 17-11-2021 22:50:43 | 13896 | 8262 | 12339 | 13110 | 13107 |
| BRAKE_LH | 17-11-2021 22:51:34 | 13896 | 8262 | 12339 | 13110 | 13107 |
| BRAKE_LH | 17-11-2021 22:51:35 | 13896 | 8262 | 12339 | 13110 | 13107 |
| BRAKE_LH | 17-11-2021 22:51:36 | 13896 | 8262 | 12339 | 13110 | 13107 |
| BRAKE_LH | 17-11-2021 22:51:37 | 0 | 0 | 0 | 0 | 0 |
If I want to do the below function to the columns v1~v4
df['v0'] = df['v0'].apply(lambda x: chr(round(x / 256)) chr(x % 256)).apply(lambda x: x[::-1])
df['v1'] = df['v1'].apply(lambda x: chr(round(x / 256)) chr(x % 256)).apply(lambda x: x[::-1])
df['v2'] = df['v2'].apply(lambda x: chr(round(x / 256)) chr(x % 256)).apply(lambda x: x[::-1])
df['v3'] = df['v3'].apply(lambda x: chr(round(x / 256)) chr(x % 256)).apply(lambda x: x[::-1])
df['v4'] = df['v4'].apply(lambda x: chr(round(x / 256)) chr(x % 256)).apply(lambda x: x[::-1])
In come cases the columns goes beyond 4 columns, say 40 or 100 columns
Is there a simple way to apply it for all columns, except--> _NAME & _TIMESTAMP columns
CodePudding user response:
You can set columns _NAME
and _TIMESTAMP
as index (to exclude them for processing) by .set_index()
. Then use .applymap()
to use your formulas for processing elementwise on each column. Finally, restore the columns _NAME
and _TIMESTAMP
to data columns by .reset_index()
, as follows:
df.set_index(['_NAME', '_TIMESTAMP']).applymap(lambda x: chr(round(x / 256)) chr(x % 256)).applymap(lambda x: x[::-1]).reset_index()
Result:
_NAME _TIMESTAMP v0 v1 v2 v3 v4
0 BRAKE_LH 17-11-2021 22:50:43 H6 F 30 63 33
1 BRAKE_LH 17-11-2021 22:51:34 H6 F 30 63 33
2 BRAKE_LH 17-11-2021 22:51:35 H6 F 30 63 33
3 BRAKE_LH 17-11-2021 22:51:36 H6 F 30 63 33
4 BRAKE_LH 17-11-2021 22:51:37
CodePudding user response:
You can put the columns you want to ignore in a set
, IGNORELIST = {'_NAME', '_TIMESTAMP'}
.
Then iterate through the column names and check whether a name is ignored or not. If it's not, apply your functions.
here's an example
# df = ..your dataframe..
IGNORELIST = {'colname1', 'colname2'}
for colname in df.columns:
if not colname in IGNORELIST:
df[colname] = df[colname].apply(lambda x: chr(round(x / 256)) chr(x % 256)).apply(lambda x: x[::-1])