In the dataset I have 5000000 rows, I would like to add a column called 'embeddings' to my dataset.
dataset = dataset.add_column('embeddings', embeddings)
The variable embeddings is a numpy memmap array of size (5000000, 512).
But I get this error:
ArrowInvalidTraceback (most recent call last) in ----> 1 dataset = dataset.add_column('embeddings', embeddings)
/opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 486 } 487 # apply actual function --> 488 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 489 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 490 # re-apply format to the output
/opt/conda/lib/python3.8/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 404 # Call actual function 405 --> 406 out = func(self, *args, **kwargs) 407 408 # Update fingerprint of in-place transforms update in-place history of transforms
/opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in add_column(self, name, column, new_fingerprint) 3346 :class:
Dataset
3347 """ -> 3348 column_table = InMemoryTable.from_pydict({name: column}) 3349 # Concatenate tables horizontally 3350 table = ConcatenationTable.from_tables([self._data, column_table], axis=1)/opt/conda/lib/python3.8/site-packages/datasets/table.py in from_pydict(cls, *args, **kwargs) 367 @classmethod 368 def from_pydict(cls, *args, **kwargs): --> 369 return cls(pa.Table.from_pydict(*args, **kwargs)) 370 371 @inject_arrow_table_documentation(pa.Table.from_batches)
/opt/conda/lib/python3.8/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_pydict()
/opt/conda/lib/python3.8/site-packages/pyarrow/table.pxi in pyarrow.lib._from_pydict()
/opt/conda/lib/python3.8/site-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/opt/conda/lib/python3.8/site-packages/pyarrow/array.pxi in pyarrow.lib.array()
/opt/conda/lib/python3.8/site-packages/pyarrow/array.pxi in pyarrow.lib._ndarray_to_array()
/opt/conda/lib/python3.8/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status()
ArrowInvalid: only handle 1-dimensional arrays
How can I solve, possibly in an efficient way, since the embeddings array does not fit the RAM?
CodePudding user response:
from datasets import load_dataset
ds = load_dataset("cosmos_qa", split="train")
new_column = ["foo"] * len(ds)
ds = ds.add_column("new_column", new_column)
and you get a dataset
Dataset({
features: ['id', 'context', 'question', 'answer0', 'answer1', 'answer2', 'answer3', 'label', 'new_column'],
num_rows: 25262
})
CodePudding user response:
The issue here is that you're trying to add a column, but the data you are passing is a 2d numpy array. arrow
(the library used to represent datasets) only supports 1d numpy array.
You can try to add each column of your 2d numpy array one by one:
for i, column in enumerate(embeddings.T):
ds = ds.add_column('embeddings_' str(i), column)
How can I solve, possibly in an efficient way, since the embeddings array does not fit the RAM?
I don't think there's a work around the memory issue. huggingface datasets are backed by arrow table, which have to fit in memory.