I have 10 row height data, where there is a NaN value and I want to fill it with a value before that NaN value.
How can I implement this in python language especially pandas library, and here is my dataframe.
Datetime Height
0 2011-03-11 00:00:00 3503.3519
1 2011-03-11 00:00:15 3503.3529
2 2011-03-11 00:00:30 3503.3529
3 2011-03-11 00:00:45 3503.3519
4 2011-03-11 00:01:00 NaN
5 2011-03-11 00:01:15 3503.3519
6 2011-03-11 00:01:30 3503.3529
7 2011-03-11 00:01:45 3503.3539
8 2011-03-11 00:02:00 3503.3550
9 2011-03-11 00:02:15 3503.3550
Height = df['Height']
Height[4] = Height[4-1]
Print(Height[4])
3503.3519
Where the results I want are as follows:
Datetime Height
0 2011-03-11 00:00:00 3503.3519
1 2011-03-11 00:00:15 3503.3529
2 2011-03-11 00:00:30 3503.3529
3 2011-03-11 00:00:45 3503.3519
4 2011-03-11 00:01:00 3503.3519
5 2011-03-11 00:01:15 3503.3519
6 2011-03-11 00:01:30 3503.3529
7 2011-03-11 00:01:45 3503.3539
8 2011-03-11 00:02:00 3503.3550
9 2011-03-11 00:02:15 3503.3550
CodePudding user response:
Try with ffill
df['Height'] = df['Height'].ffill()