Can't get the row format correct when using pandas read_html()
. I'm looking for adjustments either to the method itself or the underlying html (scraped via bs4) to get the desired output.
Current output:
(note it is 1 row containing two types of data. ideally it should be separated to 2 rows as below)
Desired:
code to replicate the issue:
import requests
import pandas as pd
from bs4 import BeautifulSoup # alternatively
url = "http://ufcstats.com/fight-details/bb15c0a2911043bd"
df = pd.read_html(url)[-1] # last table
df.columns = [str(i) for i in range(len(df.columns))]
# to get the html via bs4
headers = {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "GET",
"Access-Control-Allow-Headers": "Content-Type",
"Access-Control-Max-Age": "3600",
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0",
}
req = requests.get(url, headers)
soup = BeautifulSoup(req.content, "html.parser")
table_html = soup.find_all("table", {"class": "b-fight-details__table"})[-1]
CodePudding user response:
How to (quick) fix with beautifulsoup
You can create a dict
with the headers from the table
and then iterate over each td
to append the list of values stored in the p
:
data = {}
header = [x.text.strip() for x in table_html.select('tr th')]
for i,td in enumerate(table_html.select('tr:has(td) td')):
data[header[i]] = [x.text.strip() for x in td.select('p')]
pd.DataFrame.from_dict(data)
Example
import requests
import pandas as pd
from bs4 import BeautifulSoup # alternatively
url = "http://ufcstats.com/fight-details/bb15c0a2911043bd"
# to get the html via bs4
headers = {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "GET",
"Access-Control-Allow-Headers": "Content-Type",
"Access-Control-Max-Age": "3600",
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0",
}
req = requests.get(url, headers)
soup = BeautifulSoup(req.content, "html.parser")
table_html = soup.find_all("table", {"class": "b-fight-details__table"})[-1]
data = {}
header = [x.text.strip() for x in table_html.select('tr th')]
for i,td in enumerate(table_html.select('tr:has(td) td')):
data[header[i]] = [x.text.strip() for x in td.select('p')]
pd.DataFrame.from_dict(data)
Output
Fighter | Sig. str | Sig. str. % | Head | Body | Leg | Distance | Clinch | Ground |
---|---|---|---|---|---|---|---|---|
Joanne Wood | 27 of 68 | 39% | 8 of 36 | 3 of 7 | 16 of 25 | 26 of 67 | 1 of 1 | 0 of 0 |
Taila Santos | 30 of 60 | 50% | 21 of 46 | 3 of 7 | 6 of 7 | 19 of 42 | 0 of 0 | 11 of 18 |
CodePudding user response:
Similar idea to use enumerate to determine number of rows, but use :-soup-contains
to target table, then nth-child
selector to extract relevant row during list comprehension. pandas
to convert resultant list of lists into a DataFrame. Assumes rows are added in same pattern as current 2.
from bs4 import BeautifulSoup as bs
import requests
import pandas as pd
r = requests.get('http://ufcstats.com/fight-details/bb15c0a2911043bd')
soup = bs(r.content, 'lxml')
table = soup.select_one(
'.js-fight-section:has(p:-soup-contains("Significant Strikes")) table')
df = pd.DataFrame(
[[i.text.strip() for i in table.select(f'tr:nth-child(1) td p:nth-child({n 1})')]
for n, _ in enumerate(table.select('tr:nth-child(1) > td:nth-child(1) > p'))], columns=[i.text.strip() for i in table.select('th')])
print(df)