This is my dataframe
ID Date Value Final Value
0 9560 12/15/2021 30 5.0
1 9560 07/3/2021 25 5.0
2 9560 03/03/2021 20 20.0
3 9712 08/20/2021 15 5.0
4 9712 12/31/2021 10 10.0
5 9920 04/11/2021 5 5.0
Here I need to create a another column 'Round Date'. Get the date from 'Date' column if date is greater than 15 Date should be round off to the beginning date of that month or else begininng date of next month. The expected output is given below.
ID Date Value Final Value Round Date
0 9560 12/15/2021 30 5.0 12/01/2021
1 9560 07/3/2021 25 5.0 07/01/2021
2 9560 03/03/2021 20 20.0 03/01/2021
3 9712 08/20/2021 15 5.0 09/01/2021
4 9712 12/31/2021 10 10.0 01/01/2022
5 9920 04/11/2021 5 5.0 04/01/2021
CodePudding user response:
The solution is composed of a few elements:
create a function to round a single date. Although an anonymous function lambda can be used it is better to create a function because we can test the function (unit test) to see that it performs the way we expect.
First we need to convert the 'Date' column into a datetime type. For this we can use the built in pandas function pd.to_datetime().
Lastly in order to create the 'Round Date' column we will just call apply() on the 'Date' column and give it our round date function.
Here is the code to round the Date column in pandas dataframe:
from dateutil import relativedelta
import pandas as pd
# function to round date
def round_date(date):
# check if day is greater than 15
if date.day > 15:
# change month to next month
date = relativedelta.relativedelta(months=1)
# change day to start of month
date = date.replace(day=1)
return date
# read data
df = pd.read_csv('your-path')
# change date column to datetime
df['Date'] = pd.to_datetime(df['Date'] )
# apply round date function to column
df['Round Date'] = df['Date'].apply(round_date)
Input:
ID Date Value Final Value
0 9560 12/15/2021 30 5.0
1 9560 07/03/2021 25 5.0
2 9560 03/03/2021 20 20.0
3 9712 08/20/2021 15 5.0
4 9712 12/31/2021 10 10.0
5 9920 04/11/2021 5 5.0
Output:
ID Date Value Final Value Round Date
0 9560 12/15/2021 30 5.0 12/01/2021
1 9560 07/03/2021 25 5.0 07/01/2021
2 9560 03/03/2021 20 20.0 03/01/2021
3 9712 08/20/2021 15 5.0 09/01/2021
4 9712 12/31/2021 10 10.0 01/01/2022
5 9920 04/11/2021 5 5.0 04/01/2021
CodePudding user response:
Here is a solution using apply() and lambda
- Convert values in Date column to datetime using
pd.to_datetime()
- use
apply()
andlambda
function to set day to 1 and increase month value if condition day is greater than 15
Code:
import pandas as pd
from datetime import timedelta
from dateutil.relativedelta import relativedelta
df = pd.DataFrame({'Date': ['2/1/2021', '01/31/2021', '12/31/2021', '2021-12-01']})
df.Date = pd.to_datetime(df.Date)
df['Round Date'] = df.Date.apply(lambda x: x.replace(day=1) relativedelta(months=1)
if x.day > 15
else x.replace(day=1))
Input:
Date
0 2/1/2021
1 01/31/2021
2 12/31/2021
3 2021-12-01
Output:
Date Round Date
0 2021-02-01 2021-02-01
1 2021-01-31 2021-02-01
2 2021-12-31 2022-01-01
3 2021-12-01 2021-12-01
CodePudding user response:
Using numpy's where
:
import pandas as pd
import numpy as np
df["Date"] = pd.to_datetime(df.date)
df["date.rounded"] = np.where(
df.Date.dt.day > 15,
df.Date pd.offsets.MonthBegin(0),
df.Date pd.offsets.MonthEnd(0) - pd.offsets.MonthBegin(1)
)
This yields:
Date date.rounded
0 2021-12-15 2021-12-01
1 2021-07-03 2021-07-01
2 2021-03-03 2021-03-01
3 2021-08-20 2021-09-01
4 2021-12-31 2022-01-01
5 2021-04-11 2021-04-01