My dataframe:
DF = spark.createDataFrame([[114.038696, 22.5315, 114.047302, 22.531799], [ 114.027901, 22.5228, 114.026299, 22.5238], [ 114.026299, 22.5238,114.024597,22.5271], [114.024597, 22.5271,114.024696,22.527201]], list('ABCD'))
DF.show()
---------- ------- ---------- ---------
| A| B| C| D|
---------- ------- ---------- ---------
|114.038696|22.5315|114.047302|22.531799|
|114.027901|22.5228|114.026299| 22.5238|
|114.026299|22.5238|114.024597| 22.5271|
|114.024597|22.5271|114.024696|22.527201|
---------- ------- ---------- ---------
(A, B)
& (C, D)
are coordinates of two points;
column A
& column C
are latitude;
column B
& column D
are longitude;
I want to calculate the geographical distance between the two points.
I try to:
from geopy.distance import geodesic
DF = DF.withColumn('Lengths/m', geodesic((['B'],['A']), (['D'],['C'])).m)
Then I get the error:
TypeError: float() argument must be a string or a number, not 'list'
What should I do differently to successfully calculate the geographical distance?
CodePudding user response:
You need to define a custom user-defined-function:
from geopy.distance import geodesic
import pyspark.sql.functions as F
@F.udf(returnType=FloatType())
def geodesic_udf(a, b):
return geodesic(a, b).m
DF = DF.withColumn('Lengths/m', geodesic_udf(F.array("B", "A"), F.array("D", "C")))
DF.show()
# ---------- ------- ---------- --------- ---------
#|A |B |C |D |Lengths/m|
# ---------- ------- ---------- --------- ---------
#|114.038696|22.5315|114.047302|22.531799|885.94244|
#|114.027901|22.5228|114.026299|22.5238 |198.55937|
#|114.026299|22.5238|114.024597|22.5271 |405.21692|
#|114.024597|22.5271|114.024696|22.527201|15.126849|
# ---------- ------- ---------- --------- ---------