I have a 10x10 matrix and I want to divide each row of the matrix with the elements of a vector.
For eg: Suppose I have a 3x3 matrix
1 1 1
2 2 2
3 3 3
and a vector [1, 2, 3]
Then this is the operation I wish to do:
1/1 1/2 1/3
2/1 2/1 2/3
3/1 3/2 3/3
i.e, divide the elements of a row by the elements of a vector(A python list)
I can do this using for loops. But, is there a better way to do this operation in python?
CodePudding user response:
You should look into broadcasting in numpy. For your example this is the solution:
a = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])
b = np.array([1, 2, 3]).reshape(1, 3)
c = a / b
print(c)
>>> [[1. 0.5 0.33333333]
[2. 1. 0.66666667]
[3. 1.5 1. ]]
CodePudding user response:
The first source array should be created as a Numpy array:
a = np.array([
[ 1, 1, 1 ],
[ 2, 2, 2 ],
[ 3, 3, 3 ]])
You don't need to reshape the divisor array (it can be a 1-D array, as in your source data sample):
v = np.array([1, 2, 3])
Just divide them:
result = a / v
and the result is:
array([[1. , 0.5 , 0.33333333],
[2. , 1. , 0.66666667],
[3. , 1.5 , 1. ]])