I have a dataframe with mixed types - strings, floats, integers, bool.
pd.DataFrame({'a': [6.6, -5.2, 2.1, float('NaN'), float('NaN')],
'b': ['a', 'a', 'NaN', 'b', 'NaN'],
'c': [True, True, False, float('NaN'), float('NaN')],
'd': [1,2,3,None, None]})
Most of these columns have some NaNs. I want to impute the missing values according to some custom rules: For every float type column - take the median of this column and impute. For every string column - take the mode and impute. For every integer column - take the median, ceil and impute. For every bool column - impute missing values with False.
That is what I have done so far:
fill_na_policy = {'float64': np.median(),
'int': np.ceil(np.median()),
'string': scipy.stats.mode(),
'bool': False}
df.fillna(df.dtypes.replace(fill_na_policy), inplace=True)
Please advise how to make it work or should I create lambda functions for each type?
CodePudding user response:
You can distinguish and select the different types columns using select_dtypes
, and impute using the technique you want each individual parts of the dataframe. Consider the below example:
# Select numeric columns
f = df.select_dtypes('float64')
i = df.select_dtypes('int64')
# Select string and boolean columns
o = df.select_dtypes('object')
b = df.select_dtypes(include='bool')
# Fill numeric
df[f.columns] = f.fillna(f.median())
df[i.columns] = i.fillna(np.ceil(np.median(i)))
# Fill object
df[o.columns] = o.fillna(o.agg(lambda x: x.mode().values[0]))
df[b.columns] = b.fillna(False)
Which will give you:
a b c d
0 6.6 a True 1.0
1 -5.2 a True 2.0
2 2.1 a False 3.0
3 2.1 b True 2.0
4 2.1 a True 2.0
CodePudding user response:
Create a Series for the various dtypes:
# create more variables depending on the dtype
floats = df.select_dtypes(float).median()
strings = df.select_dtypes('object').mode().stack().droplevel(0)
fill_vals = pd.concat([floats, strings])
Now fill the dataframe (the columns are the index in fill_vals, the values will be replaced for each corresponding column):
df.fillna(fill_vals)