I want to create a model which will take multiple inputs, with one input being number of time a loop has to be run in a custom layer, example implementation is below:
import tensorflow as tf
class TrialLayer(tf.keras.layers.Layer):
def __init__(self):
super().__init__()
self.d = tf.Variable(2.0)
def call(self, a, b,c):
e = 0.0
# iterator = tf.shape(tf.range(c)) # fails
for i in range(c):
e = e a b self.d
return e
# =============================================================================
input_a = tf.keras.layers.Input(shape=(1), dtype=tf.float32)
input_b = tf.keras.layers.Input(shape=(1), dtype=tf.float32)
input_c = tf.keras.layers.Input(shape=(1), dtype=tf.int32)
tl = TrialLayer()(input_a, input_b, input_c)
model = tf.keras.models.Model(inputs=[input_a,input_b,input_c], outputs=tl)
print(model([2.0,3.0,4]))
This gives the error
ValueError: Shape must be rank 0 but is rank 2
for 'limit' for '{{node trial_layer_1/range}} = Range[Tidx=DT_INT32](trial_layer_1/range/start, trial_layer_1/Maximum, trial_layer_1/range/delta)' with input shapes: [], [?,1], [].
How to pass iterator value as input?
CodePudding user response:
Maybe try using tf.Variable
combined with tf.while_loop
like this:
import tensorflow as tf
class TrialLayer(tf.keras.layers.Layer):
def __init__(self):
super().__init__()
self.d = tf.Variable(2.0)
def call(self, a, b, c):
e = tf.Variable(0.0, shape=tf.TensorShape(None))
i = tf.constant(0)
while_condition = lambda i: tf.math.less_equal(i, c)
def body(i):
e.assign_add(a b self.d)
return [tf.add(i, 1)]
_ = tf.while_loop(while_condition, body, [i])
return e
input_a = tf.keras.layers.Input(shape=(1), dtype=tf.float32)
input_b = tf.keras.layers.Input(shape=(1), dtype=tf.float32)
input_c = tf.keras.layers.Input(shape=(1), dtype=tf.int32)
tl = TrialLayer()(input_a, input_b, input_c)
model = tf.keras.models.Model(inputs=[input_a,input_b,input_c], outputs=tl)
tf.print(model([2.0,3.0, 4]))
# 35
You can also change the condition to tf.math.less(i, c)
and get 28 as your output.