I have a large dataset (4GB) like this:
userID date timeofday seq
0 1000014754 20211028 20 133669542676:1:148;133658378700:1:16;133650937891:1:85
1 1000019906 20211028 6 508420199:0:0;133669581685:1:19
2 1000019906 20211028 22 133665269544:0:0
From this, I would like to split "seq" by ";" first and create a new dataset with renames. It looks like this:
userID date timeofday seq1 seq2 seq3 ... seqN
0 1000014754 20211028 20 133669542676:1:148 133658378700:1:16 133650937891:1:85
1 1000019906 20211028 6 508420199:0:0 133669581685:1:19 None None
2 1000019906 20211028 22 133665269544:0:0 None None None
Then I want to split the seq1,seq2,...,seqN by ":", and create a new dataset with renames. It looks like this:
userID date timeofday name1 click1 time1 name2 click2 time2 ....nameN clickN timeN
0 1000014754 20211028 20 133669542676 1 148 133658378700 1 16 133650937891 1 85 None None None
1 1000019906 20211028 6 508420199 0 0 133669581685 1 19 None None None None None None
2 1000019906 20211028 22 133665269544 0 0 None None None None None None None None None
I know pandas.split can split the columns, but I don't know how to split it effficiently. Thank you!
CodePudding user response:
A clean solution is to use a regex and extractall
, then reshape using unstack
, rename the columns and join
to the original dataframe.
Assuming df
the dataframe name
df2 = (df['seq'].str.extractall(r'(?P<name>[^:] ):(?P<click>[^:] ):(?P<time>[^;] );?')
.unstack('match')
.sort_index(level=1, axis=1, sort_remaining=False)
)
df2.columns = df2.columns.map(lambda x: f'{x[0]}{x[1] 1}')
df2 = df.drop(columns='seq').join(df2)
output:
userID date timeofday name1 click1 time1 name2 click2 time2 name3 click3 time3
0 1000014754 20211028 20 133669542676 1 148 133658378700 1 16 133650937891 1 85
1 1000019906 20211028 6 508420199 0 0 133669581685 1 19 NaN NaN NaN
2 1000019906 20211028 22 133665269544 0 0 NaN NaN NaN NaN NaN NaN
CodePudding user response:
Try this, it should get you the result:
A = pd.DataFrame({1:[2,3,4], 2:['as:d', 'asd', 'a:sd']})
print(A)
for i in A.index:
split =str(A[2][i]).split(':',1)
A.at[i,3] = split[0]
if len(split) > 1:
A.at[i, 4] = split[1]
print(A)
It's probably slow since the dataframe is updated often. Alternatively you can write the new columns in separate lists and merge them into one table later.2