I had a dataset that looks like this:
Value Type X_sq
-1.975767 Weather
-0.540979 Fruits
-2.359127 Fruits
-2.815604 Corona
-0.929755 Weather
I wanted to iterate through each row and calculate a sum of squares value for each row above (only if the Type matches). I want to put this value in the X.sq column.
So for example, in the first row, there's nothing above. So only (-1.975767 x -1.975767). In the second row, there's no FRUITS row above it, so it will just be -0.540979 x -0.540979. However, in the third row, when we scan all previous rows, we should find that FRUITS is already there. So we should get the last's FRUIT's ..... X_sq value and calculate a new sum of squares.
Value Type X_sq
-1.975767 Weather -1.975767 * -1.975767 = x
-0.540979 Fruits -0.540979 * -0.540979 = y
-2.359127 Fruits y ( -2.359127 x -2.359127)
-2.815604 Corona -2.815604 * -2.815604
-0.929755 Weather x (-0.929755 * -0.929755)
I tried this and it works perfectly:
df['sumOfSquares'] = df['value'].pow(2).groupby(df['type']).cumsum()
However, now I want to group based on two cols: Such that Country and Type both match.
Value Type X_sq Country
-1.975767 Weather Albania
-0.540979 Fruits Brazil --should be grouped
-2.359127 Fruits Brazil --should be grouped
-2.815604 Corona Albania
-0.929755 Weather Chine
I tried this (type = themes) here:
df['sumOfSquares'] = df['value'].pow(2).groupby(['themes', 'suppliers_country']).cumsum()
However, it gives me this error even though 'types' is present in the dataset
----> 1 df['sumOfSquares'] = df['avg_country_tone'].pow(2).groupby(['themes', 'suppliers_country']).cumsum()
File /usr/local/Cellar/ipython/8.0.1/libexec/lib/python3.10/site-packages/pandas/core/series.py:1929, in Series.groupby(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)
1925 axis = self._get_axis_number(axis)
1927 # error: Argument "squeeze" to "SeriesGroupBy" has incompatible type
1928 # "Union[bool, NoDefault]"; expected "bool"
-> 1929 return SeriesGroupBy(
1930 obj=self,
1931 keys=by,
1932 axis=axis,
1933 level=level,
1934 as_index=as_index,
1935 sort=sort,
1936 group_keys=group_keys,
1937 squeeze=squeeze, # type: ignore[arg-type]
1938 observed=observed,
1939 dropna=dropna,
1940 )
File /usr/local/Cellar/ipython/8.0.1/libexec/lib/python3.10/site-packages/pandas/core/groupby/groupby.py:882, in GroupBy.__init__(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)
879 if grouper is None:
880 from pandas.core.groupby.grouper import get_grouper
--> 882 grouper, exclusions, obj = get_grouper(
883 obj,
884 keys,
885 axis=axis,
886 level=level,
887 sort=sort,
888 observed=observed,
889 mutated=self.mutated,
890 dropna=self.dropna,
891 )
893 self.obj = obj
894 self.axis = obj._get_axis_number(axis)
File /usr/local/Cellar/ipython/8.0.1/libexec/lib/python3.10/site-packages/pandas/core/groupby/grouper.py:882, in get_grouper(obj, key, axis, level, sort, observed, mutated, validate, dropna)
880 in_axis, level, gpr = False, gpr, None
881 else:
--> 882 raise KeyError(gpr)
883 elif isinstance(gpr, Grouper) and gpr.key is not None:
884 # Add key to exclusions
885 exclusions.add(gpr.key)
KeyError: 'themes'
even though themes is there. Themes = type
CodePudding user response:
the error occours because you are grouping a pd Series and it has no keys named 'themes', 'suppliers_country'
. To group a Series you have to pass as groupby
arrgument another series rather then strings.
Try to concatenate string columns to group in a single Series, and group as:
df['sumOfSquares'] = df['Value'].pow(2).groupby(df.Type "__" df.Country).cumsum()
In alternative, you can also group by 2 different series (that I think was your first idea):
df['sumOfSquares'] = df['Value'].pow(2).groupby([df.Type,df.Country]).cumsum()
CodePudding user response:
You can create new helper column, here new
, so possible use your solution with define columns names in groupby
:
df['sumOfSquares'] = (df.assign(new = df['avg_country_tone'].pow(2))
.groupby(['themes', 'suppliers_country'])['new']
.cumsum())
CodePudding user response:
If you want to merge Type
and Country
columns to get the total sum, use:
out = df.assign(X_sq=df['Value'].pow(2)).groupby(['Type', 'Country'])['X_sq'] \
.sum().reset_index()
print(out)
# Output
Type Country X_sq
0 Corona Albania 7.927626
1 Fruits Brazil 5.858138
2 Weather Albania 3.903655
3 Weather Chine 0.864444