I have a TensorFlow Keras Deep Learning model in the form of an h5 file. How can i pass a Fast API uploaded image as np.float32 to my model.
import numpy as np
import cv2
from fastapi import FastAPI, File, UploadFile
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow as tf
model=load_model("complete_model.h5")
app = FastAPI()
def prepare(image):
IMG_SIZE = 224
new_array = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
return new_array.reshape(-1, IMG_SIZE,IMG_SIZE,3)
@app.post("/")
async def root(file: UploadFile = File(...)):
global model
content = await file.read()
nparr = np.fromstring(content, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR).astype(np.float32)
prediction = model.predict(prepare(img))
return prediction
When uploading image using Swagger UI i get an error
line 137, in jsonable_encoder
data = dict(obj)
TypeError: 'numpy.float32' object is not iterable
Normal code
import numpy as np
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow as tf
import cv2
model=load_model("complete_model.h5")
def prepare(image):
IMG_SIZE = 224
new_array = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
return new_array.reshape(-1, IMG_SIZE,IMG_SIZE,3)
img = cv2.imread("./test.jpeg").astype(np.float32)
prediction = model.predict(prepare(img))
print(prediction)
Result in terminal:
[[0.25442022 0.74557984]]
How can I get the same result while using Fast API
CodePudding user response:
The error is thrown when returning the response
(i.e., prediction
in your case) from your endpoint. It looks like FastAPI is trying to convert the numpy
array to a dict
. Have a look a the discussion here as well. Thus, what you could do is to convert the numpy
array to JSON
:
return json.dumps(prediction.tolist())
On OpenAPI (Swagger UI), you will still be able to see the expected result. However, if you need to convert it back to a numpy
array, you can parse the JSON string as shown below.
arr = np.array(json.loads(resp.json())) # resp.json() if using Python requests